1,985 research outputs found

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Mapping intra- and inter-annual dynamics in wetlands with multispectral, thermal and SAR time series

    Get PDF
    Kartierung der intra- und interannuellen Dynamik von Feuchtgebieten mit multispektralen, thermischen und SAR-Zeitreihen Die Analyse der aktuellen rĂ€umlichen Verbreitung und der zeitlichen Entwicklung von Feuchtgebieten stellt eine Ă€ußerst komplexe Aufgabe dar, welche durch die SaisonalitĂ€t, die schwierige ZugĂ€nglichkeit und die besonderen Eigenschaften als Ökoton bedingt ist. Erdbeobachtungssysteme sind somit das am besten geeignete Werkzeug, um zeitliche und rĂ€umliche Muster von Feuchtgebieten auf globaler Ebene zu beobachten (saisonale VerĂ€nderungen und Langzeit-Trends) und um den Einfluss der menschlichen AktivitĂ€ten auf ihre physischen und biologischen Eigenschaften zu untersuchen. Zur Kartierung von raum-zeitlichen Mustern wurden Zeitreihen von Radar- (Sentinel-1), Multispektral- (Sentinel-2) und Thermal-Satellitendaten (MODIS) in fĂŒnf Untersuchungsgebieten, mit fĂŒr Feuchtgebiete unterschiedlichen typischen Charakteristika, untersucht. In Kapitel 1 werden die Problematik in Bezug auf die Definition von Feuchtgebieten erlĂ€utert und allgemeine Degradations-Trends beschrieben. Die Kapitel 2 und 3 behandeln einen Algorithmus, der VerĂ€nderungen mithilfe von SAR-Zeitreihen feststellt, sowie die Vorteile des Cloud-Computings fĂŒr das operationelle Monitoring saisonaler Muster und die Erkennung kurzfristig auftretender VerĂ€nderungen. In den Kapiteln 4 und 5 werden die zwei Hauptursachen fĂŒr den Verlust von Feuchtgebieten betrachtet: der Staudammbau und die Ausdehnung landwirtschaftlicher FlĂ€chen. In Kapitel 4 werden dichte Zeitreihen multispektraler (Sentinel-2) und SAR-Daten (Sentinel-1) verwendet, um die Feuchtgebiete Albaniens – eines Landes in dem kontrĂ€re PlĂ€ne zum Ausbau seines Wasserkraftpotentials und dem Schutz intakter Flussökosysteme zu Spannungen fĂŒhren – landesweit zu kartieren. Die synergetischen Vorteile, die sich durch die Fusionierung von multispektralen und SAR-Daten fĂŒr die Klassifikation ergeben, werden dabei herausgestellt. Kapitel 5 veranschaulicht, dass die Kilombero-Überschwemmungsebene in Tansania ein großes und bedeutendes Feuchtgebiet ist, das in den vergangenen Jahren infolge der weitgehend unkontrollierten Ausbreitung landwirtschaftlicher FlĂ€chen in seiner Ausdehnung und seiner Ökologie stark beeintrĂ€chtigt wurde. Um die Auswirkungen der LandnutzungsĂ€nderungen des Feuchtgebietes wĂ€hrend der vergangenen 18 Jahre zu analysieren, wurden eine Zeitreihe (2000 bis 2017) thermaler Daten (MODIS) analysiert. Die drei fĂŒr die Zeitreihenanalyse angewandten Modelle zeigen, wie landwirtschaftliche Praktiken die LandoberflĂ€chentemperatur in den landwirtschaftlich genutzten Gebieten sowie in den angrenzenden natĂŒrlichen Feuchtgebieten erhöht haben.Due to wetlands’ seasonality, their difficult access and ecotone character, determining their actual extension and trends over time is a complex task. Earth Observation systems are the most appropriate tool to monitor their spatio-temporal patterns (seasonal changes and long term trends) at global scales, and to study the effects that human activities have in their physical and biological properties. In this work I use time series of radar (Sentinel-1), multispectral (Sentinel-2) and thermal (MODIS) imagery to map the spatio-temporal patterns in 5 wetlands of different characteristics. First, I introduce in chapter 1 the problematic of wetlands’ definitions and their degradation trends. I continue with a brief introduction on remote sensing, time series analysis, and their applications on wetlands’ research and management. In chapters 2 and 3 I implement an algorithm for change detection of time series of Sentinel-1 images and demonstrate the advantages of cloud computation for operational monitoring. In chapters 4 and 5 I address two of the main causes of wetland degradation: dam building and agricultural expansion. In chapter 4 I use dense time series of Sentinel-1 and Sentinel-2 images map all the wetlands of Albania; a country struggling between developing its large hydropower potential or preserving its intact and valuable river ecosystems. I evaluate the synergic advantages of fusing multispectral and radar imagery in combination with knowledge-based rules to produce classification of higher thematic and spatial resolutions. In chapter 5 I present how the Kilombero Floodplain, in Tanzania, has been degraded during the last years due to uncontrolled farmland expansion. I use a time series of thermal imagery (MODIS) from 2000 until 2017 to analyze the effect of land use changes on the wetland. I compare three models for time series analysis and reveal how farming practices have increased the surface temperature of the farmed area, as well as in adjacent natural wetlands.Mapeo de las dinĂĄmicas inter- e intra-anuales en humedales con series temporales de imĂĄgenes multiespectrales, termales y de radar Debido a la estacionalidad de los humedales, su difĂ­cil acceso y sus caracterĂ­sticas de ecotono, determinar su actual extensiĂłn y sus tendencias a lo largo del tiempo es una tarea compleja. Los sistemas de observaciĂłn terrestres son la herramienta mĂĄs apropiada para monitorear sus patrones espacio-temporales (estacionalidad y tendencias a largo plazo) a escalas globales, y para estudiar los efectos que las actividades humanas causan en sus propiedades fĂ­sicas y biolĂłgicas. En esta tesis uso series temporales de imĂĄgenes radar (Sentinel-1), multiespectrales (Sentinel-2) y termales (MODIS) para mapear los patrones espacio-temporales de 5 humedales de diferentes caracterĂ­sticas. En el capĂ­tulo 1 describo los retos que derivan de las diferentes definiciones que existen de los humedales. TambiĂ©n presento las tendencias globales de degradaciĂłn que la mayorĂ­a de los humedales continĂșan experimentando en los Ășltimos años. ContinĂșo con una breve introducciĂłn de los sistemas de teledetecciĂłn remota, anĂĄlisis de series temporales, y sus aplicaciones a la investigaciĂłn y gestiĂłn de los humedales. En los capĂ­tulos 2 y 3 implemento un algoritmo de detecciĂłn de cambios para series temporales de imĂĄgenes radar, y muestro las ventajas de usar sistemas de computaciĂłn en la nube para monitorear cambios en la cobertura del suelo a corto plazo. En los capĂ­tulos 4 y 5 trato con dos de las causas mĂĄs comunes de degradaciĂłn de humedales: la construcciĂłn de presas y la expansiĂłn de la agricultura. En el capĂ­tulo 4 uso series temporales de imĂĄgenes multiespectrales (Sentinel-2) y radar (Sentinel-1) para mapear todos los humedales Albania; un paĂ­s que se debate entre desarrollar su potencial hidroenergĂ©tico o preservar sus valiosos e intactos ecosistemas de rivera. Mediante la fusiĂłn de imĂĄgenes radar y multiespectrales y el uso de reglas de decisiĂłn genero un mapa de suficiente resoluciĂłn espacial y temĂĄtica para que pueda ser usado por sectores interesados y gestores. En el capĂ­tulo 5 presento como las llanuras inundables de Kilombero, en Tanzania, han sido degradadas durante los Ășltimos años debido a la expansiĂłn incontrolada de la agricultura. Usando series temporales de imĂĄgenes termales (MODIS) desde 2000 hasta 2017 y mapas de cambios de usos del suelo, determino los efectos que estos cambios han tenido en el humedal. Comparo 3 modelos diferentes de anĂĄlisis de series temporales y muestro cĂłmo la expansiĂłn de la agricultura ha incrementado la temperatura superficial terrestre, no solo de la zona cultivada, sino tambiĂ©n de zonas adyacentes aĂșn naturales

    Historical forest biomass dynamics modelled with Landsat spectral trajectories

    Get PDF
    Acknowledgements National Forest Inventory data are available online, provided by Ministerio de Agricultura, Alimentación y Medio Ambiente (España). Landsat images are available online, provided by the USGS.Peer reviewedPostprin

    An object-based classification approach for mapping "migrant housing" in the mega-urban area of the Pearl River Delta (China)

    Get PDF
    Urban areas develop on formal and informal levels. Informal development is often highly dynamic, leading to a lag of spatial information about urban structure types. In this work, an object-based remote sensing approach will be presented to map the migrant housing urban structure type in the Pearl River Delta, China. SPOT5 data were utilized for the classification (auxiliary data, particularly up-to-date cadastral data, were not available). A hierarchically structured classification process was used to create (spectral) independence from single satellite scenes and to arrive at a transferrable classification process. Using the presented classification approach, an overall classification accuracy of migrant housing of 68.0% is attained

    Modelling spatial variability of coffee (Coffea Arabica L.) crop condition with multispectral remote sensing data.

    Get PDF
    Doctor of Philosophy in Environmental Science. University of KwaZulu-Natal, Pietermaritzburg, 2017.Abstract available in PDF file

    Optimal land cover mapping and change analysis in northeastern oregon using landsat imagery.

    Get PDF
    Abstract The necessity for the development of repeatable, efficient, and accurate monitoring of land cover change is paramount to successful management of our planet’s natural resources. This study evaluated a number of remote sensing methods for classifying land cover and land cover change throughout a two-county area in northeastern Oregon (1986 to 2011). In the past three decades, this region has seen significant changes in forest management that have affected land use and land cover. This study employed an accuracy assessment-based empirical approach to test the optimality of a number of advanced digital image processing techniques that have recently emerged in the field of remote sensing. The accuracies are assessed using traditional error matrices, calculated using reference data obtained in the field. We found that, for single-time land cover classification, Bayes pixel-based classification using samples created with scale and shape segmentation parameters of 8 and 0.3, respectively, resulted in the highest overall accuracy. For land cover change detection, using Landsat-5 TM band 7 with a change threshold of 1.75 standard deviations resulted in the highest accuracy for forest harvesting and regeneration mapping

    A Multi-temporal fusion-based approach for land cover mapping in support of nuclear incident response

    Get PDF
    An increasingly important application of remote sensing is to provide decision support during emergency response and disaster management efforts. Land cover maps constitute one such useful application product during disaster events; if generated rapidly after any disaster, such map products can contribute to the efficacy of the response effort. In light of recent nuclear incidents, e.g., after the earthquake/tsunami in Japan (2011), our research focuses on constructing rapid and accurate land cover maps of the impacted area in case of an accidental nuclear release. The methodology involves integration of results from two different approaches, namely coarse spatial resolution multi-temporal and fine spatial resolution imagery, to increase classification accuracy. Although advanced methods have been developed for classification using high spatial or temporal resolution imagery, only a limited amount of work has been done on fusion of these two remote sensing approaches. The presented methodology thus involves integration of classification results from two different remote sensing modalities in order to improve classification accuracy. The data used included RapidEye and MODIS scenes over the Nine Mile Point Nuclear Power Station in Oswego (New York, USA). The first step in the process was the construction of land cover maps from freely available, high temporal resolution, low spatial resolution MODIS imagery using a time-series approach. We used the variability in the temporal signatures among different land cover classes for classification. The time series-specific features were defined by various physical properties of a pixel, such as variation in vegetation cover and water content over time. The pixels were classified into four land cover classes - forest, urban, water, and vegetation - using Euclidean and Mahalanobis distance metrics. On the other hand, a high spatial resolution commercial satellite, such as RapidEye, can be tasked to capture images over the affected area in the case of a nuclear event. This imagery served as a second source of data to augment results from the time series approach. The classifications from the two approaches were integrated using an a posteriori probability-based fusion approach. This was done by establishing a relationship between the classes, obtained after classification of the two data sources. Despite the coarse spatial resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion-based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. This fusion thus contributed to classification accuracy refinement, with a few additional advantages, such as correction for cloud cover and providing for an approach that is robust against point-in-time seasonal anomalies, due to the inclusion of multi-temporal data

    Evaluation of Machine Learning Algorithms for Lake Ice Classification from Optical Remote Sensing Data

    Get PDF
    The topic of lake ice cover mapping from satellite remote sensing data has gained interest in recent years since it allows the extent of lake ice and the dynamics of ice phenology over large areas to be monitored. Mapping lake ice extent can record the loss of the perennial ice cover for lakes located in the High Arctic. Moreover, ice phenology dates, retrieved from lake ice maps, are useful for assessing long-term trends and variability in climate, particularly due to their sensitivity to changes in near-surface air temperature. However, existing knowledge-driven (threshold-based) retrieval algorithms for lake ice-water classification that use top-of-the-atmosphere (TOA) reflectance products do not perform well under the condition of large solar zenith angles, resulting in low TOA reflectance. Machine learning (ML) techniques have received considerable attention in the remote sensing field for the past several decades, but they have not yet been applied in lake ice classification from optical remote sensing imagery. Therefore, this research has evaluated the capability of ML classifiers to enhance lake ice mapping using multispectral optical remote sensing data (MODIS L1B (TOA) product). Chapter 3, the main manuscript of this thesis, presents an investigation of four ML classifiers (i.e. multinomial logistic regression, MLR; support vector machine, SVM; random forest, RF; gradient boosting trees, GBT) in lake ice classification. Results are reported using 17 lakes located in the Northern Hemisphere, which represent different characteristics regarding area, altitude, freezing frequency, and ice cover duration. According to the overall accuracy assessment using a random k-fold cross-validation (k = 100), all ML classifiers were able to produce classification accuracies above 94%, and RF and GBT provided above 98% classification accuracies. Moreover, the RF and GBT algorithms provided a more visually accurate depiction of lake ice cover under challenging conditions (i.e., high solar zenith angles, black ice, and thin cloud cover). The two tree-based classifiers were found to provide the most robust spatial transferability over the 17 lakes and performed consistently well across three ice seasons, better than the other classifiers. Moreover, RF was insensitive to the choice of the hyperparameters compared to the other three classifiers. The results demonstrate that RF and GBT provide a great potential to map accurately lake ice cover globally over a long time-series. Additionally, a case study applying a convolution neural network (CNN) model for ice classification in Great Slave Lake, Canada is presented in Appendix A. Eighteen images acquired during the the ice season of 2009-2010 were used in this study. The proposed CNN produced a 98.03% accuracy with the testing dataset; however, the accuracy dropped to 90.13% using an independent (out-of-sample) validation dataset. Results show the powerful learning performance of the proposed CNN with the testing data accuracy obtained. At the same time, the accuracy reduction of the validation dataset indicates the overfitting behavior of the proposed model. A follow-up investigation would be needed to improve its performance. This thesis investigated the capability of ML algorithms (both pixel-based and spatial-based) in lake ice classification from the MODIS L1B product. Overall, ML techniques showed promising performances for lake ice cover mapping from the optical remote sensing data. The tree-based classifiers (pixel-based) exhibited the potential to produce accurate lake ice classification at a large-scale over long time-series. In addition, more work would be of benefit for improving the application of CNN in lake ice cover mapping from optical remote sensing imagery

    Mapping and monitoring forest remnants : a multiscale analysis of spatio-temporal data

    Get PDF
    KEYWORDS : Landsat, time series, machine learning, semideciduous Atlantic forest, Brazil, wavelet transforms, classification, change detectionForests play a major role in important global matters such as carbon cycle, climate change, and biodiversity. Besides, forests also influence soil and water dynamics with major consequences for ecological relations and decision-making. One basic requirement to quantify and model these processes is the availability of accurate maps of forest cover. Data acquisition and analysis at appropriate scales is the keystone to achieve the mapping accuracy needed for development and reliable use of ecological models.The current and upcoming production of high-resolution data sets plus the ever-increasing time series that have been collected since the seventieth must be effectively explored. Missing values and distortions further complicate the analysis of this data set. Thus, integration and proper analysis is of utmost importance for environmental research. New conceptual models in environmental sciences, like the perception of multiple scales, require the development of effective implementation techniques.This thesis presents new methodologies to map and monitor forests on large, highly fragmented areas with complex land use patterns. The use of temporal information is extensively explored to distinguish natural forests from other land cover types that are spectrally similar. In chapter 4, novel schemes based on multiscale wavelet analysis are introduced, which enabled an effective preprocessing of long time series of Landsat data and improved its applicability on environmental assessment.In chapter 5, the produced time series as well as other information on spectral and spatial characteristics were used to classify forested areas in an experiment relating a number of combinations of attribute features. Feature sets were defined based on expert knowledge and on data mining techniques to be input to traditional and machine learning algorithms for pattern recognition, viz . maximum likelihood, univariate and multivariate decision trees, and neural networks. The results showed that maximum likelihood classification using temporal texture descriptors as extracted with wavelet transforms was most accurate to classify the semideciduous Atlantic forest in the study area.In chapter 6, a multiscale approach to digital change detection was developed to deal with multisensor and noisy remotely sensed images. Changes were extracted according to size classes minimising the effects of geometric and radiometric misregistration.Finally, in chapter 7, an automated procedure for GIS updating based on feature extraction, segmentation and classification was developed to monitor the remnants of semideciduos Atlantic forest. The procedure showed significant improvements over post classification comparison and direct multidate classification based on artificial neural networks.</p

    Quickbird satellite imagery for riparian management : characterizing riparian filter strips and detecting concentrated flow in an agricultural watershed

    Get PDF
    Riparian ecology plays an important part in the filtration of sediments from upland agricultural lands. The focus of this work makes use of multispectral high spatial resolution remote sensing imagery (Quickbird by Digital Globe) and geographic information systems (GIS) to characterize significant riparian attributes in the USDA’s experimental watershed, Goodwin Creek, located in northern Mississippi. Significant riparian filter characteristics include the width of the strip, vegetation properties, soil properties, topography, and upland land use practices. The land use and vegetation classes are extracted from the remotely sensed image with a supervised maximum likelihood classification algorithm. Accuracy assessments resulted in an acceptable overall accuracy of 84 percent. In addition to sensing riparian vegetation characteristics, this work addresses the issue of concentrated flow bypassing a riparian filter. Results indicate that Quickbird multispectral remote sensing and GIS data are capable of determining riparian impact on filtering sediment. Quickbird imagery is a practical solution for land managers to monitor the effectiveness of riparian filtration in an agricultural watershed
    • 

    corecore