75,830 research outputs found

    ElasTraS: An Elastic Transactional Data Store in the Cloud

    Full text link
    Over the last couple of years, "Cloud Computing" or "Elastic Computing" has emerged as a compelling and successful paradigm for internet scale computing. One of the major contributing factors to this success is the elasticity of resources. In spite of the elasticity provided by the infrastructure and the scalable design of the applications, the elephant (or the underlying database), which drives most of these web-based applications, is not very elastic and scalable, and hence limits scalability. In this paper, we propose ElasTraS which addresses this issue of scalability and elasticity of the data store in a cloud computing environment to leverage from the elastic nature of the underlying infrastructure, while providing scalable transactional data access. This paper aims at providing the design of a system in progress, highlighting the major design choices, analyzing the different guarantees provided by the system, and identifying several important challenges for the research community striving for computing in the cloud.Comment: 5 Pages, In Proc. of USENIX HotCloud 200

    Optimizing Splicing Junction Detection in Next Generation Sequencing Data on a Virtual-GRID Infrastructure

    Get PDF
    The new protocol for sequencing the messenger RNA in a cell, named RNA-seq produce millions of short sequence fragments. Next Generation Sequencing technology allows more accurate analysis but increase needs in term of computational resources. This paper describes the optimization of a RNA-seq analysis pipeline devoted to splicing variants detection, aimed at reducing computation time and providing a multi-user/multisample environment. This work brings two main contributions. First, we optimized a well-known algorithm called TopHat by parallelizing some sequential mapping steps. Second, we designed and implemented a hybrid virtual GRID infrastructure allowing to efficiently execute multiple instances of TopHat running on different samples or on behalf of different users, thus optimizing the overall execution time and enabling a flexible multi-user environmen

    ISO/EPC Addressing Methods to Support Supply Chain in the Internet of Things

    Full text link
    RFID systems are among the major infrastructures of the Internet of Things, which follow ISO and EPC standards. In addition, ISO standard constitutes the main layers of supply chain, and many RFID systems benefit from ISO standard for different purposes. In this paper, we tried to introduce addressing systems based on ISO standards, through which the range of things connected to the Internet of Things will grow. Our proposed methods are addressing methods which can be applied to both ISO and EPC standards. The proposed methods are simple, hierarchical, and low cost implementation. In addition, the presented methods enhance interoperability among RFIDs, and also enjoys a high scalability, since it well covers all of EPC schemes and ISO supply chain standards. Further, by benefiting from a new algorithm for long EPCs known as selection algorithm, they can significantly facilitate and accelerate the operation of address mapping.Comment: arXiv admin note: text overlap with arXiv:1807.0217
    corecore