2,835 research outputs found

    Fine-grained Apparel Classification and Retrieval without rich annotations

    Full text link
    The ability to correctly classify and retrieve apparel images has a variety of applications important to e-commerce, online advertising and internet search. In this work, we propose a robust framework for fine-grained apparel classification, in-shop and cross-domain retrieval which eliminates the requirement of rich annotations like bounding boxes and human-joints or clothing landmarks, and training of bounding box/ key-landmark detector for the same. Factors such as subtle appearance differences, variations in human poses, different shooting angles, apparel deformations, and self-occlusion add to the challenges in classification and retrieval of apparel items. Cross-domain retrieval is even harder due to the presence of large variation between online shopping images, usually taken in ideal lighting, pose, positive angle and clean background as compared with street photos captured by users in complicated conditions with poor lighting and cluttered scenes. Our framework uses compact bilinear CNN with tensor sketch algorithm to generate embeddings that capture local pairwise feature interactions in a translationally invariant manner. For apparel classification, we pass the feature embeddings through a softmax classifier, while, the in-shop and cross-domain retrieval pipelines use a triplet-loss based optimization approach, such that squared Euclidean distance between embeddings measures the dissimilarity between the images. Unlike previous works that relied on bounding box, key clothing landmarks or human joint detectors to assist the final deep classifier, proposed framework can be trained directly on the provided category labels or generated triplets for triplet loss optimization. Lastly, Experimental results on the DeepFashion fine-grained categorization, and in-shop and consumer-to-shop retrieval datasets provide a comparative analysis with previous work performed in the domain.Comment: 14 pages, 6 figures, 3 tables, Submitted to Springer Journal of Applied Intelligenc

    Interpretable Partitioned Embedding for Customized Fashion Outfit Composition

    Full text link
    Intelligent fashion outfit composition becomes more and more popular in these years. Some deep learning based approaches reveal competitive composition recently. However, the unexplainable characteristic makes such deep learning based approach cannot meet the the designer, businesses and consumers' urge to comprehend the importance of different attributes in an outfit composition. To realize interpretable and customized fashion outfit compositions, we propose a partitioned embedding network to learn interpretable representations from clothing items. The overall network architecture consists of three components: an auto-encoder module, a supervised attributes module and a multi-independent module. The auto-encoder module serves to encode all useful information into the embedding. In the supervised attributes module, multiple attributes labels are adopted to ensure that different parts of the overall embedding correspond to different attributes. In the multi-independent module, adversarial operation are adopted to fulfill the mutually independent constraint. With the interpretable and partitioned embedding, we then construct an outfit composition graph and an attribute matching map. Given specified attributes description, our model can recommend a ranked list of outfit composition with interpretable matching scores. Extensive experiments demonstrate that 1) the partitioned embedding have unmingled parts which corresponding to different attributes and 2) outfits recommended by our model are more desirable in comparison with the existing methods

    Studio2Shop: from studio photo shoots to fashion articles

    Full text link
    Fashion is an increasingly important topic in computer vision, in particular the so-called street-to-shop task of matching street images with shop images containing similar fashion items. Solving this problem promises new means of making fashion searchable and helping shoppers find the articles they are looking for. This paper focuses on finding pieces of clothing worn by a person in full-body or half-body images with neutral backgrounds. Such images are ubiquitous on the web and in fashion blogs, and are typically studio photos, we refer to this setting as studio-to-shop. Recent advances in computational fashion include the development of domain-specific numerical representations. Our model Studio2Shop builds on top of such representations and uses a deep convolutional network trained to match a query image to the numerical feature vectors of all the articles annotated in this image. Top-kk retrieval evaluation on test query images shows that the correct items are most often found within a range that is sufficiently small for building realistic visual search engines for the studio-to-shop setting.Comment: 12 pages, 9 figures (Figure 1 has 5 subfigures, Figure 2 has 3 subfigures), 7 table

    Snap and Find: Deep Discrete Cross-domain Garment Image Retrieval

    Full text link
    With the increasing number of online stores, there is a pressing need for intelligent search systems to understand the item photos snapped by customers and search against large-scale product databases to find their desired items. However, it is challenging for conventional retrieval systems to match up the item photos captured by customers and the ones officially released by stores, especially for garment images. To bridge the customer- and store- provided garment photos, existing studies have been widely exploiting the clothing attributes (\textit{e.g.,} black) and landmarks (\textit{e.g.,} collar) to learn a common embedding space for garment representations. Unfortunately they omit the sequential correlation of attributes and consume large quantity of human labors to label the landmarks. In this paper, we propose a deep multi-task cross-domain hashing termed \textit{DMCH}, in which cross-domain embedding and sequential attribute learning are modeled simultaneously. Sequential attribute learning not only provides the semantic guidance for embedding, but also generates rich attention on discriminative local details (\textit{e.g.,} black buttons) of clothing items without requiring extra landmark labels. This leads to promising performance and 306×\times boost on efficiency when compared with the state-of-the-art models, which is demonstrated through rigorous experiments on two public fashion datasets

    Looking at Outfit to Parse Clothing

    Full text link
    This paper extends fully-convolutional neural networks (FCN) for the clothing parsing problem. Clothing parsing requires higher-level knowledge on clothing semantics and contextual cues to disambiguate fine-grained categories. We extend FCN architecture with a side-branch network which we refer outfit encoder to predict a consistent set of clothing labels to encourage combinatorial preference, and with conditional random field (CRF) to explicitly consider coherent label assignment to the given image. The empirical results using Fashionista and CFPD datasets show that our model achieves state-of-the-art performance in clothing parsing, without additional supervision during training. We also study the qualitative influence of annotation on the current clothing parsing benchmarks, with our Web-based tool for multi-scale pixel-wise annotation and manual refinement effort to the Fashionista dataset. Finally, we show that the image representation of the outfit encoder is useful for dress-up image retrieval application

    Learning the Latent "Look": Unsupervised Discovery of a Style-Coherent Embedding from Fashion Images

    Full text link
    What defines a visual style? Fashion styles emerge organically from how people assemble outfits of clothing, making them difficult to pin down with a computational model. Low-level visual similarity can be too specific to detect stylistically similar images, while manually crafted style categories can be too abstract to capture subtle style differences. We propose an unsupervised approach to learn a style-coherent representation. Our method leverages probabilistic polylingual topic models based on visual attributes to discover a set of latent style factors. Given a collection of unlabeled fashion images, our approach mines for the latent styles, then summarizes outfits by how they mix those styles. Our approach can organize galleries of outfits by style without requiring any style labels. Experiments on over 100K images demonstrate its promise for retrieving, mixing, and summarizing fashion images by their style

    Unconstrained Fashion Landmark Detection via Hierarchical Recurrent Transformer Networks

    Full text link
    Fashion landmarks are functional key points defined on clothes, such as corners of neckline, hemline, and cuff. They have been recently introduced as an effective visual representation for fashion image understanding. However, detecting fashion landmarks are challenging due to background clutters, human poses, and scales. To remove the above variations, previous works usually assumed bounding boxes of clothes are provided in training and test as additional annotations, which are expensive to obtain and inapplicable in practice. This work addresses unconstrained fashion landmark detection, where clothing bounding boxes are not provided in both training and test. To this end, we present a novel Deep LAndmark Network (DLAN), where bounding boxes and landmarks are jointly estimated and trained iteratively in an end-to-end manner. DLAN contains two dedicated modules, including a Selective Dilated Convolution for handling scale discrepancies, and a Hierarchical Recurrent Spatial Transformer for handling background clutters. To evaluate DLAN, we present a large-scale fashion landmark dataset, namely Unconstrained Landmark Database (ULD), consisting of 30K images. Statistics show that ULD is more challenging than existing datasets in terms of image scales, background clutters, and human poses. Extensive experiments demonstrate the effectiveness of DLAN over the state-of-the-art methods. DLAN also exhibits excellent generalization across different clothing categories and modalities, making it extremely suitable for real-world fashion analysis.Comment: To appear in ACM Multimedia (ACM MM) 2017 as a full research paper. More details at the project page: http://personal.ie.cuhk.edu.hk/~lz013/projects/UnconstrainedLandmarks.htm

    Fashion Retrieval via Graph Reasoning Networks on a Similarity Pyramid

    Full text link
    Matching clothing images from customers and online shopping stores has rich applications in E-commerce. Existing algorithms encoded an image as a global feature vector and performed retrieval with the global representation. However, discriminative local information on clothes are submerged in this global representation, resulting in sub-optimal performance. To address this issue, we propose a novel Graph Reasoning Network (GRNet) on a Similarity Pyramid, which learns similarities between a query and a gallery cloth by using both global and local representations in multiple scales. The similarity pyramid is represented by a Graph of similarity, where nodes represent similarities between clothing components at different scales, and the final matching score is obtained by message passing along edges. In GRNet, graph reasoning is solved by training a graph convolutional network, enabling to align salient clothing components to improve clothing retrieval. To facilitate future researches, we introduce a new benchmark FindFashion, containing rich annotations of bounding boxes, views, occlusions, and cropping. Extensive experiments show that GRNet obtains new state-of-the-art results on two challenging benchmarks, e.g., pushing the top-1, top-20, and top-50 accuracies on DeepFashion to 26%, 64%, and 75% (i.e., 4%, 10%, and 10% absolute improvements), outperforming competitors with large margins. On FindFashion, GRNet achieves considerable improvements on all empirical settings.Comment: ICCV 2019 (oral

    Fashion IQ: A New Dataset Towards Retrieving Images by Natural Language Feedback

    Full text link
    Conversational interfaces for the detail-oriented retail fashion domain are more natural, expressive, and user friendly than classical keyword-based search interfaces. In this paper, we introduce the Fashion IQ dataset to support and advance research on interactive fashion image retrieval. Fashion IQ is the first fashion dataset to provide human-generated captions that distinguish similar pairs of garment images together with side-information consisting of real-world product descriptions and derived visual attribute labels for these images. We provide a detailed analysis of the characteristics of the Fashion IQ data, and present a transformer-based user simulator and interactive image retriever that can seamlessly integrate visual attributes with image features, user feedback, and dialog history, leading to improved performance over the state of the art in dialog-based image retrieval. We believe that our dataset will encourage further work on developing more natural and real-world applicable conversational shopping assistants

    Unified Structured Learning for Simultaneous Human Pose Estimation and Garment Attribute Classification

    Full text link
    In this paper, we utilize structured learning to simultaneously address two intertwined problems: human pose estimation (HPE) and garment attribute classification (GAC), which are valuable for a variety of computer vision and multimedia applications. Unlike previous works that usually handle the two problems separately, our approach aims to produce a jointly optimal estimation for both HPE and GAC via a unified inference procedure. To this end, we adopt a preprocessing step to detect potential human parts from each image (i.e., a set of "candidates") that allows us to have a manageable input space. In this way, the simultaneous inference of HPE and GAC is converted to a structured learning problem, where the inputs are the collections of candidate ensembles, the outputs are the joint labels of human parts and garment attributes, and the joint feature representation involves various cues such as pose-specific features, garment-specific features, and cross-task features that encode correlations between human parts and garment attributes. Furthermore, we explore the "strong edge" evidence around the potential human parts so as to derive more powerful representations for oriented human parts. Such evidences can be seamlessly integrated into our structured learning model as a kind of energy function, and the learning process could be performed by standard structured Support Vector Machines (SVM) algorithm. However, the joint structure of the two problems is a cyclic graph, which hinders efficient inference. To resolve this issue, we compute instead approximate optima by using an iterative procedure, where in each iteration the variables of one problem are fixed. In this way, satisfactory solutions can be efficiently computed by dynamic programming. Experimental results on two benchmark datasets show the state-of-the-art performance of our approach.Comment: Accepted to IEEE Trans. on Image Processin
    corecore