23,612 research outputs found

    A Geometric View on Constrained M-Estimators

    Get PDF
    We study the estimation error of constrained M-estimators, and derive explicit upper bounds on the expected estimation error determined by the Gaussian width of the constraint set. Both of the cases where the true parameter is on the boundary of the constraint set (matched constraint), and where the true parameter is strictly in the constraint set (mismatched constraint) are considered. For both cases, we derive novel universal estimation error bounds for regression in a generalized linear model with the canonical link function. Our error bound for the mismatched constraint case is minimax optimal in terms of its dependence on the sample size, for Gaussian linear regression by the Lasso

    An Estimation and Analysis Framework for the Rasch Model

    Full text link
    The Rasch model is widely used for item response analysis in applications ranging from recommender systems to psychology, education, and finance. While a number of estimators have been proposed for the Rasch model over the last decades, the available analytical performance guarantees are mostly asymptotic. This paper provides a framework that relies on a novel linear minimum mean-squared error (L-MMSE) estimator which enables an exact, nonasymptotic, and closed-form analysis of the parameter estimation error under the Rasch model. The proposed framework provides guidelines on the number of items and responses required to attain low estimation errors in tests or surveys. We furthermore demonstrate its efficacy on a number of real-world collaborative filtering datasets, which reveals that the proposed L-MMSE estimator performs on par with state-of-the-art nonlinear estimators in terms of predictive performance.Comment: To be presented at ICML 201

    Tyler's Covariance Matrix Estimator in Elliptical Models with Convex Structure

    Full text link
    We address structured covariance estimation in elliptical distributions by assuming that the covariance is a priori known to belong to a given convex set, e.g., the set of Toeplitz or banded matrices. We consider the General Method of Moments (GMM) optimization applied to robust Tyler's scatter M-estimator subject to these convex constraints. Unfortunately, GMM turns out to be non-convex due to the objective. Instead, we propose a new COCA estimator - a convex relaxation which can be efficiently solved. We prove that the relaxation is tight in the unconstrained case for a finite number of samples, and in the constrained case asymptotically. We then illustrate the advantages of COCA in synthetic simulations with structured compound Gaussian distributions. In these examples, COCA outperforms competing methods such as Tyler's estimator and its projection onto the structure set.Comment: arXiv admin note: text overlap with arXiv:1311.059
    • …
    corecore