5,698 research outputs found

    An Intelligent Framework for Energy-Aware Mobile Computing Subject to Stochastic System Dynamics

    Get PDF
    abstract: User satisfaction is pivotal to the success of mobile applications. At the same time, it is imperative to maximize the energy efficiency of the mobile device to ensure optimal usage of the limited energy source available to mobile devices while maintaining the necessary levels of user satisfaction. However, this is complicated due to user interactions, numerous shared resources, and network conditions that produce substantial uncertainty to the mobile device's performance and power characteristics. In this dissertation, a new approach is presented to characterize and control mobile devices that accurately models these uncertainties. The proposed modeling framework is a completely data-driven approach to predicting power and performance. The approach makes no assumptions on the distributions of the underlying sources of uncertainty and is capable of predicting power and performance with over 93% accuracy. Using this data-driven prediction framework, a closed-loop solution to the DEM problem is derived to maximize the energy efficiency of the mobile device subject to various thermal, reliability and deadline constraints. The design of the controller imposes minimal operational overhead and is able to tune the performance and power prediction models to changing system conditions. The proposed controller is implemented on a real mobile platform, the Google Pixel smartphone, and demonstrates a 19% improvement in energy efficiency over the standard frequency governor implemented on all Android devices.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201

    E3^3Pose: Energy-Efficient Edge-assisted Multi-camera System for Multi-human 3D Pose Estimation

    Full text link
    Multi-human 3D pose estimation plays a key role in establishing a seamless connection between the real world and the virtual world. Recent efforts adopted a two-stage framework that first builds 2D pose estimations in multiple camera views from different perspectives and then synthesizes them into 3D poses. However, the focus has largely been on developing new computer vision algorithms on the offline video datasets without much consideration on the energy constraints in real-world systems with flexibly-deployed and battery-powered cameras. In this paper, we propose an energy-efficient edge-assisted multiple-camera system, dubbed E3^3Pose, for real-time multi-human 3D pose estimation, based on the key idea of adaptive camera selection. Instead of always employing all available cameras to perform 2D pose estimations as in the existing works, E3^3Pose selects only a subset of cameras depending on their camera view qualities in terms of occlusion and energy states in an adaptive manner, thereby reducing the energy consumption (which translates to extended battery lifetime) and improving the estimation accuracy. To achieve this goal, E3^3Pose incorporates an attention-based LSTM to predict the occlusion information of each camera view and guide camera selection before cameras are selected to process the images of a scene, and runs a camera selection algorithm based on the Lyapunov optimization framework to make long-term adaptive selection decisions. We build a prototype of E3^3Pose on a 5-camera testbed, demonstrate its feasibility and evaluate its performance. Our results show that a significant energy saving (up to 31.21%) can be achieved while maintaining a high 3D pose estimation accuracy comparable to state-of-the-art methods

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Design of Event-Triggered Fault-Tolerant Control for Stochastic Systems with Time-Delays

    Get PDF
    This paper proposes two novel, event-triggered fault-tolerant control strategies for a class of stochastic systems with state delays. The plant is disturbed by a Gaussian process, actuator faults, and unknown disturbances. First, a special case about fault signals that are coupled to the unknown disturbances is discussed, and then a fault-tolerant strategy is designed based on an event condition on system states. Subsequently, a send-on-delta transmission framework is established to deal with the problem of fault-tolerant control strategy against fault signals separated from the external disturbances. Two criteria are provided to design feedback controllers in order to guarantee that the systems are exponentially mean-square stable, and the corresponding H∞-norm disturbance attenuation levels are achieved. Two theorems were obtained by synthesizing the feedback control gains and the desired event conditions in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are provided to illustrate the effectiveness of the proposed theoretical results

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN
    corecore