5,936 research outputs found
Towards the Safety of Human-in-the-Loop Robotics: Challenges and Opportunities for Safety Assurance of Robotic Co-Workers
The success of the human-robot co-worker team in a flexible manufacturing
environment where robots learn from demonstration heavily relies on the correct
and safe operation of the robot. How this can be achieved is a challenge that
requires addressing both technical as well as human-centric research questions.
In this paper we discuss the state of the art in safety assurance, existing as
well as emerging standards in this area, and the need for new approaches to
safety assurance in the context of learning machines. We then focus on robotic
learning from demonstration, the challenges these techniques pose to safety
assurance and indicate opportunities to integrate safety considerations into
algorithms "by design". Finally, from a human-centric perspective, we stipulate
that, to achieve high levels of safety and ultimately trust, the robotic
co-worker must meet the innate expectations of the humans it works with. It is
our aim to stimulate a discussion focused on the safety aspects of
human-in-the-loop robotics, and to foster multidisciplinary collaboration to
address the research challenges identified
Mission Control Concepts for Robotic Operations: Existing approaches and new Solutions
This paper gives a preliminary overview on activities
within the currently ongoing Mission Control Concepts
for Robotic Operations (MICCRO) study.
The aim of the MICCRO study is to reveal commonalities
in the operations of past, current and future robotic
space missions in order to find an abstract, representative
mission control concept applicable to multiple future
missions with robotic systems involved. The existing
operational concepts, responsibilities and information
flows during the different mission phases are taken into
account.
A particular emphasis is put on the possible interaction
between different autonomous components (on-board
and on-ground), their synchronisation and the possible
shift of autonomy borders during different mission
phases
Robot-aided neurorehabilitation of the upper extremities
Task-oriented repetitive movements can improve muscle strength and movement co-ordination in patients with impairments due to neurological lesions. The application of robotics and automation technology can serve to assist, enhance, evaluate and document the rehabilitation of movements. The paper provides an overview of existing devices that can support movement therapy of the upper extremities in subjects with neurological pathologies. The devices are critically compared with respect to technical function, clinical applicability, and, if they exist, clinical outcome
- …
