104,368 research outputs found

    Algorithms for outerplanar graph roots and graph roots of pathwidth at most 2

    Full text link
    Deciding whether a given graph has a square root is a classical problem that has been studied extensively both from graph theoretic and from algorithmic perspectives. The problem is NP-complete in general, and consequently substantial effort has been dedicated to deciding whether a given graph has a square root that belongs to a particular graph class. There are both polynomial-time solvable and NP-complete cases, depending on the graph class. We contribute with new results in this direction. Given an arbitrary input graph G, we give polynomial-time algorithms to decide whether G has an outerplanar square root, and whether G has a square root that is of pathwidth at most 2

    Threshold graph limits and random threshold graphs

    Full text link
    We study the limit theory of large threshold graphs and apply this to a variety of models for random threshold graphs. The results give a nice set of examples for the emerging theory of graph limits.Comment: 47 pages, 8 figure

    Burning a Graph is Hard

    Full text link
    Graph burning is a model for the spread of social contagion. The burning number is a graph parameter associated with graph burning that measures the speed of the spread of contagion in a graph; the lower the burning number, the faster the contagion spreads. We prove that the corresponding graph decision problem is \textbf{NP}-complete when restricted to acyclic graphs with maximum degree three, spider graphs and path-forests. We provide polynomial time algorithms for finding the burning number of spider graphs and path-forests if the number of arms and components, respectively, are fixed.Comment: 20 Pages, 4 figures, presented at GRASTA-MAC 2015 (October 19-23rd, 2015, Montr\'eal, Canada
    • …
    corecore