2 research outputs found

    Clock Error Analysis of Common Time of Flight based Positioning Methods

    Full text link
    Today, many applications such as production or rescue settings rely on highly accurate entity positioning. Advanced Time of Flight (ToF) based positioning methods provide highaccuracy localization of entities. A key challenge for ToF based positioning is to synchronize the clocks between the participating entities. This paper summarizes and analyzes ToA and TDoA methods with respect to clock error robustness. The focus is on synchronization-less methods, i.e. methods which reduce the infrastructure requirement significantly. We introduce a unified notation to survey and compare the relevant work from literature. Then we apply a clock error model and compute worst case location-accuracy errors. Our analysis reveals a superior error robustness against clock errors for so called Double-Pulse methods when applied to radio based ToF positioningComment: Published in IEEEXplore: https://ieeexplore.ieee.org/abstract/document/891177

    A Generalized TDoA/ToA Model for ToF Positioning

    Full text link
    Many applications require positioning. Time of Flight (ToF) methods calculate distances by measuring the propagation time of signals. We present a novel ToF localization method. Our new approach works infrastructure-less, without pre-defined roles like Anchors or Tags. It generalizes existing synchronization-less Time Difference of Arrival (TDoA) and Time of Arrival (ToA) algorithms. We show how known algorithms can be derived from our new method. A major advantage of our approach is that it provides a comparable or better clock error robustness, i.e. the typical errors of crystal oscillators have negligible impact for TDoA and ToA measurements. We show that our channel usage is for most cases superior compared to the state-of-the art.Comment: Published in IEEEXplore: https://ieeexplore.ieee.org/abstract/document/891174
    corecore