2 research outputs found

    Dual Control Memory Augmented Neural Networks for Treatment Recommendations

    Full text link
    Machine-assisted treatment recommendations hold a promise to reduce physician time and decision errors. We formulate the task as a sequence-to-sequence prediction model that takes the entire time-ordered medical history as input, and predicts a sequence of future clinical procedures and medications. It is built on the premise that an effective treatment plan may have long-term dependencies from previous medical history. We approach the problem by using a memory-augmented neural network, in particular, by leveraging the recent differentiable neural computer that consists of a neural controller and an external memory module. But differing from the original model, we use dual controllers, one for encoding the history followed by another for decoding the treatment sequences. In the encoding phase, the memory is updated as new input is read; at the end of this phase, the memory holds not only the medical history but also the information about the current illness. During the decoding phase, the memory is write-protected. The decoding controller generates a treatment sequence, one treatment option at a time. The resulting dual controller write-protected memory-augmented neural network is demonstrated on the MIMIC-III dataset on two tasks: procedure prediction and medication prescription. The results show improved performance over both traditional bag-of-words and sequence-to-sequence methods.Comment: 12 pages, 6 figure

    Memory and attention in deep learning

    Full text link
    Intelligence necessitates memory. Without memory, humans fail to perform various nontrivial tasks such as reading novels, playing games or solving maths. As the ultimate goal of machine learning is to derive intelligent systems that learn and act automatically just like human, memory construction for machine is inevitable. Artificial neural networks model neurons and synapses in the brain by interconnecting computational units via weights, which is a typical class of machine learning algorithms that resembles memory structure. Their descendants with more complicated modeling techniques (a.k.a deep learning) have been successfully applied to many practical problems and demonstrated the importance of memory in the learning process of machinery systems. Recent progresses on modeling memory in deep learning have revolved around external memory constructions, which are highly inspired by computational Turing models and biological neuronal systems. Attention mechanisms are derived to support acquisition and retention operations on the external memory. Despite the lack of theoretical foundations, these approaches have shown promises to help machinery systems reach a higher level of intelligence. The aim of this thesis is to advance the understanding on memory and attention in deep learning. Its contributions include: (i) presenting a collection of taxonomies for memory, (ii) constructing new memory-augmented neural networks (MANNs) that support multiple control and memory units, (iii) introducing variability via memory in sequential generative models, (iv) searching for optimal writing operations to maximise the memorisation capacity in slot-based memory networks, and (v) simulating the Universal Turing Machine via Neural Stored-program Memory-a new kind of external memory for neural networks.Comment: PHD Thesi
    corecore