7,532 research outputs found

    Inferring transportation modes from GPS trajectories using a convolutional neural network

    Full text link
    Identifying the distribution of users' transportation modes is an essential part of travel demand analysis and transportation planning. With the advent of ubiquitous GPS-enabled devices (e.g., a smartphone), a cost-effective approach for inferring commuters' mobility mode(s) is to leverage their GPS trajectories. A majority of studies have proposed mode inference models based on hand-crafted features and traditional machine learning algorithms. However, manual features engender some major drawbacks including vulnerability to traffic and environmental conditions as well as possessing human's bias in creating efficient features. One way to overcome these issues is by utilizing Convolutional Neural Network (CNN) schemes that are capable of automatically driving high-level features from the raw input. Accordingly, in this paper, we take advantage of CNN architectures so as to predict travel modes based on only raw GPS trajectories, where the modes are labeled as walk, bike, bus, driving, and train. Our key contribution is designing the layout of the CNN's input layer in such a way that not only is adaptable with the CNN schemes but represents fundamental motion characteristics of a moving object including speed, acceleration, jerk, and bearing rate. Furthermore, we ameliorate the quality of GPS logs through several data preprocessing steps. Using the clean input layer, a variety of CNN configurations are evaluated to achieve the best CNN architecture. The highest accuracy of 84.8% has been achieved through the ensemble of the best CNN configuration. In this research, we contrast our methodology with traditional machine learning algorithms as well as the seminal and most related studies to demonstrate the superiority of our framework.Comment: 12 pages, 3 figures, 7 tables, Transportation Research Part C: Emerging Technologie

    Estimator: An Effective and Scalable Framework for Transportation Mode Classification over Trajectories

    Full text link
    Transportation mode classification, the process of predicting the class labels of moving objects transportation modes, has been widely applied to a variety of real world applications, such as traffic management, urban computing, and behavior study. However, existing studies of transportation mode classification typically extract the explicit features of trajectory data but fail to capture the implicit features that affect the classification performance. In addition, most of the existing studies also prefer to apply RNN-based models to embed trajectories, which is only suitable for classifying small-scale data. To tackle the above challenges, we propose an effective and scalable framework for transportation mode classification over GPS trajectories, abbreviated Estimator. Estimator is established on a developed CNN-TCN architecture, which is capable of leveraging the spatial and temporal hidden features of trajectories to achieve high effectiveness and efficiency. Estimator partitions the entire traffic space into disjointed spatial regions according to traffic conditions, which enhances the scalability significantly and thus enables parallel transportation classification. Extensive experiments using eight public real-life datasets offer evidence that Estimator i) achieves superior model effectiveness (i.e., 99% Accuracy and 0.98 F1-score), which outperforms state-of-the-arts substantially; ii) exhibits prominent model efficiency, and obtains 7-40x speedups up over state-of-the-arts learning-based methods; and iii) shows high model scalability and robustness that enables large-scale classification analytics.Comment: 12 pages, 8 figure

    A ship movement classification based on Automatic Identification System (AIS) data using Convolutional Neural Network

    Get PDF
    With a wide use of AIS data in maritime transportation, there is an increasing demand to develop algorithms to efficiently classify a ship’s AIS data into different movements (static, normal navigation and manoeuvring). To achieve this, several studies have been proposed to use labelled features but with the drawback of not being able to effectively extract the details of ship movement information. In addition, a ship movement is in a free space, which is different to a road vehicle’s movement in road grids, making it inconvenient to directly migrate the methods for GPS data classification into AIS data. To deal with these problems, a Convolutional Neural Network-Ship Movement Modes Classification (CNN-SMMC) algorithm is proposed in this paper. The underlying concept of this method is to train a neural network to learn from the labelled AIS data, and the unlabelled AIS data can be effectively classified by using this trained network. More specifically, a Ship Movement Image Generation and Labelling (SMIGL) algorithm is first designed to convert a ship’s AIS trajectories into different movement images to make a full use of the CNN’s classification ability. Then, a CNN-SMMC architecture is built with a series of functional layers (convolutional layer, max-pooling layer, dense layer etc.) for ship movement classification with seven experiments been designed to find the optimal parameters for the CNN-SMMC. Considering the imbalanced features of AIS data, three metrics (average accuracy, score and Area Under Curve (AUC)) are selected to evaluate the performance of the CNN-SMMC. Finally, several benchmark classification algorithms (K-Nearest Neighbours (KNN), Support Vector Machine (SVM) and Decision Tree (DT)) are selected to compare with CNN-SMMC. The results demonstrate that the proposed CNN-SMMC has a better performance in the classification of AIS data

    Vulnerable road users and connected autonomous vehicles interaction: a survey

    Get PDF
    There is a group of users within the vehicular traffic ecosystem known as Vulnerable Road Users (VRUs). VRUs include pedestrians, cyclists, motorcyclists, among others. On the other hand, connected autonomous vehicles (CAVs) are a set of technologies that combines, on the one hand, communication technologies to stay always ubiquitous connected, and on the other hand, automated technologies to assist or replace the human driver during the driving process. Autonomous vehicles are being visualized as a viable alternative to solve road accidents providing a general safe environment for all the users on the road specifically to the most vulnerable. One of the problems facing autonomous vehicles is to generate mechanisms that facilitate their integration not only within the mobility environment, but also into the road society in a safe and efficient way. In this paper, we analyze and discuss how this integration can take place, reviewing the work that has been developed in recent years in each of the stages of the vehicle-human interaction, analyzing the challenges of vulnerable users and proposing solutions that contribute to solving these challenges.This work was partially funded by the Ministry of Economy, Industry, and Competitiveness of Spain under Grant: Supervision of drone fleet and optimization of commercial operations flight plans, PID2020-116377RB-C21.Peer ReviewedPostprint (published version

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore