109,099 research outputs found

    End-to-End Tracking and Semantic Segmentation Using Recurrent Neural Networks

    Full text link
    In this work we present a novel end-to-end framework for tracking and classifying a robot's surroundings in complex, dynamic and only partially observable real-world environments. The approach deploys a recurrent neural network to filter an input stream of raw laser measurements in order to directly infer object locations, along with their identity in both visible and occluded areas. To achieve this we first train the network using unsupervised Deep Tracking, a recently proposed theoretical framework for end-to-end space occupancy prediction. We show that by learning to track on a large amount of unsupervised data, the network creates a rich internal representation of its environment which we in turn exploit through the principle of inductive transfer of knowledge to perform the task of it's semantic classification. As a result, we show that only a small amount of labelled data suffices to steer the network towards mastering this additional task. Furthermore we propose a novel recurrent neural network architecture specifically tailored to tracking and semantic classification in real-world robotics applications. We demonstrate the tracking and classification performance of the method on real-world data collected at a busy road junction. Our evaluation shows that the proposed end-to-end framework compares favourably to a state-of-the-art, model-free tracking solution and that it outperforms a conventional one-shot training scheme for semantic classification

    Deep Semantic Classification for 3D LiDAR Data

    Full text link
    Robots are expected to operate autonomously in dynamic environments. Understanding the underlying dynamic characteristics of objects is a key enabler for achieving this goal. In this paper, we propose a method for pointwise semantic classification of 3D LiDAR data into three classes: non-movable, movable and dynamic. We concentrate on understanding these specific semantics because they characterize important information required for an autonomous system. Non-movable points in the scene belong to unchanging segments of the environment, whereas the remaining classes corresponds to the changing parts of the scene. The difference between the movable and dynamic class is their motion state. The dynamic points can be perceived as moving, whereas movable objects can move, but are perceived as static. To learn the distinction between movable and non-movable points in the environment, we introduce an approach based on deep neural network and for detecting the dynamic points, we estimate pointwise motion. We propose a Bayes filter framework for combining the learned semantic cues with the motion cues to infer the required semantic classification. In extensive experiments, we compare our approach with other methods on a standard benchmark dataset and report competitive results in comparison to the existing state-of-the-art. Furthermore, we show an improvement in the classification of points by combining the semantic cues retrieved from the neural network with the motion cues.Comment: 8 pages to be published in IROS 201

    Real time hand gesture recognition including hand segmentation and tracking

    Get PDF
    In this paper we present a system that performs automatic gesture recognition. The system consists of two main components: (i) A unified technique for segmentation and tracking of face and hands using a skin detection algorithm along with handling occlusion between skin objects to keep track of the status of the occluded parts. This is realized by combining 3 useful features, namely, color, motion and position. (ii) A static and dynamic gesture recognition system. Static gesture recognition is achieved using a robust hand shape classification, based on PCA subspaces, that is invariant to scale along with small translation and rotation transformations. Combining hand shape classification with position information and using DHMMs allows us to accomplish dynamic gesture recognition

    A computer vision system for the classification of moving object

    Get PDF
    The aim of this research is to produce a system that can detect the moving object and classify it into three classes: ā€œHumans, Vehicle and Animalsā€. Using fixed video camera in outdoors environment, the system will capture the images and digitize them using (Piccolo Pro II) frame grabber at a rate of 25 frames per second. The Background Subtraction technique has been employed in the work as it is able to provide the most complete feature for data. However, it is extremely sensitive to dynamic changes like changing of illumination. Background Subtraction is done by taking the differenc e between any frame and the background in detecting the Moving Object. In order to reduce the effect of noise pixels resulting from the Background Subtraction operation, a number of pre-processing methods have been applied on the detected moving object. These preprocessing operations involve the use of median filter as well as morphological filters. Then the outline of the object will be extracted using border extraction technique. The classification makes use of both the shape and the dynamic features of the objects. In increasing the performance of the classification, all features are sequentially arranged so that the goal of this research is to be achieved. In this work, the performance achieved is 93% for class human, 93% for class vehicle and 64% for class animal

    FPGA-based Anomalous trajectory detection using SOFM

    Get PDF
    A system for automatically classifying the trajectory of a moving object in a scene as usual or suspicious is presented. The system uses an unsupervised neural network (Self Organising Feature Map) fully implemented on a reconfigurable hardware architecture (Field Programmable Gate Array) to cluster trajectories acquired over a period, in order to detect novel ones. First order motion information, including first order moving average smoothing, is generated from the 2D image coordinates (trajectories). The classification is dynamic and achieved in real-time. The dynamic classifier is achieved using a SOFM and a probabilistic model. Experimental results show less than 15\% classification error, showing the robustness of our approach over others in literature and the speed-up over the use of conventional microprocessor as compared to the use of an off-the-shelf FPGA prototyping board
    • ā€¦
    corecore