15 research outputs found

    A Comparative Evaluation of Urban Fabric Detection Techniques Based on Mobile Traffic Data

    Get PDF
    International audienceMobile traffic data has been recently used to characterize the urban environment in terms of urban fabric profiles. While showing promising results, the existing urban fabric detection solutions are built without a clear understanding of the detection process chain. In this paper, we distinguish and analyze the different steps common to all urban profiling techniques. By evaluating the impact of each step of the process, we are able to propose a new solution that outperforms the state of the art techniques. Our approach uses the weekly periodicity of human activities, as well as a median-based filtering technique, resulting in a better clustering in terms of both coverage and entropy, as shown by results obtained on two large scale mobile traffic datasets covering the urban areas of Milan and Turin, in Italy

    Joint Spatial and Temporal Classification of Mobile Traffic Demands

    Get PDF
    International audienceMobile traffic data collected by network operators is a rich source of information about human habits, and its analysis provides insights relevant to many fields, including urbanism, transportation, sociology and networking. In this paper, we present an original approach to infer both spatial and temporal structures hidden in the mobile demand, via a first-time tailoring of Exploratory Factor Analysis (EFA) techniques to the context of mobile traffic datasets. Casting our approach to the time or space dimensions of such datasets allows solving different problems in mobile traffic analysis, i.e., network activity profiling and land use detection, respectively. Tests with real-world mobile traffic datasets show that, in both its variants above, the proposed approach (i) yields results whose quality matches or exceeds that of state-of-the-art solutions, and (ii) provides additional joint spatiotemporal knowledge that is critical to result interpretation

    Performance analysis of mobile broadband networks with 5g trends and beyond: urban areas scope in Malaysia

    Get PDF
    The performance of Mobile Broadband (MBB) services of Fourth Generation (4G) and Third Generation (3G) mobile networks over urban morphology is studied in Malaysia based on experimental measurements of drive test data. The aim of this study is to provide a roadmap for service providers to establish a realistic plan for future Fifth Generation (5G) networks. This work is a continuation of our previous work for the scope of rural areas in Malaysia. The MBB measurement data have been gathered through drive tests conducted in the urban areas of four states throughout Malaysia (namely, Klang Valley/Selangor, Johor, Sarawak and Sabah) to characterise and analyse MBB performances. The gathered data are from the cities, highways and federal roads of the chosen states, and encompasses three main Mobile Network Operators (MNOs). Data has been collected in a time span of 2 months, from January to February, using the Samsung Galaxy S6 smartphone handsets. Four MBB Key Performance Indicators (KPIs) are considered in this study (coverage, latency, satisfaction and speed) for two MBB services (web browsing and video streaming). The measurement data for characterising the performance of each MBB service has been collected using a dedicated smartphone handset. YouTube videos with 720p and 1080p resolutions have been sequentially streamed to assess the performance of MBB video-streaming services. Three distinct websites (Google, Instagram and mStar) have been accessed to evaluate the performance of MBB web-browsing services. The experimental methodology of this study integrates several diversified elements including four different urban states, four distinct KPIs, three main MNOs, two MBB services and two radio networks (4G and 3G), which are both accessible by the smartphones when available to mimic real-world scenarios. The results of this study reveal that the performance of 4G radio networks is generally superior to that of 3G. For instance, 4G networks achieved a vMOS score of more than 3 for both MBB video-streaming and web-browsing services, while 3G networks scored less than 3 across all four study areas. The analysed experimental results confirmed that compared to 3G networks, 4G technology presents an enhancement factor of up to 1.6 and 4.2 in download speed when streaming a video and browsing a web page, respectively. The study outcomes can contribute to the efficient planning of non-standalone (NSA) 5G networks in Malaysia where 5G networks will be aided by existing 4G infrastructures. Analysing the 4G coverage performance is the first step towards deciding the deployment rate of NSA 5G in Malaysia

    A Tale of Ten Cities: Characterizing Signatures of Mobile Traffic in Urban Areas

    Get PDF
    International audienceUrban landscapes present a variety of socio-topological environments that are associated to diverse human activities. As the latter affect the way individuals connect with each other, a bound exists between the urban tissue and the mobile communication demand. In this paper, we investigate the heterogeneous patterns emerging in the mobile communication activity recorded within metropolitan regions. To that end, we introduce an original technique to identify classes of mobile traffic signatures that are distinctive of different urban fabrics. Our proposed technique outperforms previous approaches when confronted to ground-truth information, and allows characterizing the mobile demand in greater detail than that attained in the literature to date. We apply our technique to extensive real-world data collected by major mobile operators in ten cities. Results unveil the diversity of baseline communication activities across countries, but also evidence the existence of a number of mobile traffic signatures that are common to all studied areas and specific to particular land uses

    Mobile Data Traffic Modeling: Revealing Temporal Facets

    Get PDF
    International audienceThis paper presents a detailed measurement-driven model of mobile data traffic usage of smartphone subscribers, using a large-scale dataset collected from a major 3G network in a dense metropolitan area. Our main contribution is a synthetic, measurement-based, mobile data traffic generator capable of simulating traffic-related activity patterns over time for different categories of subscribers and time periods for a typical day in their lives. We first characterize individual subscribers' routinary behaviour, followed by a detailed investigation of subscribers' temporal usage patterns (i.e., " when " and " how much " traffic is generated). We then classify the subscribers into six distinct profiles according to their usage patterns and model these profiles according to two daily time periods: peak and non-peak hours. We show that the synthetic trace generated by our data traffic model consistently replicates a subscriber's profiles for these two time periods when compared to the original dataset. Broadly, our observations bring important insights into temporal network resource usage. We also discuss relevant issues in traffic demands and describe implications in network solution evaluation and privacy
    corecore