198,676 research outputs found
Efficient Optimization of Performance Measures by Classifier Adaptation
In practical applications, machine learning algorithms are often needed to
learn classifiers that optimize domain specific performance measures.
Previously, the research has focused on learning the needed classifier in
isolation, yet learning nonlinear classifier for nonlinear and nonsmooth
performance measures is still hard. In this paper, rather than learning the
needed classifier by optimizing specific performance measure directly, we
circumvent this problem by proposing a novel two-step approach called as CAPO,
namely to first train nonlinear auxiliary classifiers with existing learning
methods, and then to adapt auxiliary classifiers for specific performance
measures. In the first step, auxiliary classifiers can be obtained efficiently
by taking off-the-shelf learning algorithms. For the second step, we show that
the classifier adaptation problem can be reduced to a quadratic program
problem, which is similar to linear SVMperf and can be efficiently solved. By
exploiting nonlinear auxiliary classifiers, CAPO can generate nonlinear
classifier which optimizes a large variety of performance measures including
all the performance measure based on the contingency table and AUC, whilst
keeping high computational efficiency. Empirical studies show that CAPO is
effective and of high computational efficiency, and even it is more efficient
than linear SVMperf.Comment: 30 pages, 5 figures, to appear in IEEE Transactions on Pattern
Analysis and Machine Intelligence, 201
Analysis of the Correlation Between Majority Voting Error and the Diversity Measures in Multiple Classifier Systems
Combining classifiers by majority voting (MV) has
recently emerged as an effective way of improving
performance of individual classifiers. However, the
usefulness of applying MV is not always observed and
is subject to distribution of classification outputs in a
multiple classifier system (MCS). Evaluation of MV
errors (MVE) for all combinations of classifiers in MCS
is a complex process of exponential complexity.
Reduction of this complexity can be achieved provided
the explicit relationship between MVE and any other
less complex function operating on classifier outputs is
found. Diversity measures operating on binary
classification outputs (correct/incorrect) are studied in
this paper as potential candidates for such functions.
Their correlation with MVE, interpreted as the quality
of a measure, is thoroughly investigated using artificial
and real-world datasets. Moreover, we propose new
diversity measure efficiently exploiting information
coming from the whole MCS, rather than its part, for
which it is applied
- …
