11,893 research outputs found

    Implicitly Constrained Semi-Supervised Linear Discriminant Analysis

    Full text link
    Semi-supervised learning is an important and active topic of research in pattern recognition. For classification using linear discriminant analysis specifically, several semi-supervised variants have been proposed. Using any one of these methods is not guaranteed to outperform the supervised classifier which does not take the additional unlabeled data into account. In this work we compare traditional Expectation Maximization type approaches for semi-supervised linear discriminant analysis with approaches based on intrinsic constraints and propose a new principled approach for semi-supervised linear discriminant analysis, using so-called implicit constraints. We explore the relationships between these methods and consider the question if and in what sense we can expect improvement in performance over the supervised procedure. The constraint based approaches are more robust to misspecification of the model, and may outperform alternatives that make more assumptions on the data, in terms of the log-likelihood of unseen objects.Comment: 6 pages, 3 figures and 3 tables. International Conference on Pattern Recognition (ICPR) 2014, Stockholm, Swede

    Gibbs Max-margin Topic Models with Data Augmentation

    Full text link
    Max-margin learning is a powerful approach to building classifiers and structured output predictors. Recent work on max-margin supervised topic models has successfully integrated it with Bayesian topic models to discover discriminative latent semantic structures and make accurate predictions for unseen testing data. However, the resulting learning problems are usually hard to solve because of the non-smoothness of the margin loss. Existing approaches to building max-margin supervised topic models rely on an iterative procedure to solve multiple latent SVM subproblems with additional mean-field assumptions on the desired posterior distributions. This paper presents an alternative approach by defining a new max-margin loss. Namely, we present Gibbs max-margin supervised topic models, a latent variable Gibbs classifier to discover hidden topic representations for various tasks, including classification, regression and multi-task learning. Gibbs max-margin supervised topic models minimize an expected margin loss, which is an upper bound of the existing margin loss derived from an expected prediction rule. By introducing augmented variables and integrating out the Dirichlet variables analytically by conjugacy, we develop simple Gibbs sampling algorithms with no restricting assumptions and no need to solve SVM subproblems. Furthermore, each step of the "augment-and-collapse" Gibbs sampling algorithms has an analytical conditional distribution, from which samples can be easily drawn. Experimental results demonstrate significant improvements on time efficiency. The classification performance is also significantly improved over competitors on binary, multi-class and multi-label classification tasks.Comment: 35 page
    • …
    corecore