8,979 research outputs found

    Classification-Specific Parts for Improving Fine-Grained Visual Categorization

    Full text link
    Fine-grained visual categorization is a classification task for distinguishing categories with high intra-class and small inter-class variance. While global approaches aim at using the whole image for performing the classification, part-based solutions gather additional local information in terms of attentions or parts. We propose a novel classification-specific part estimation that uses an initial prediction as well as back-propagation of feature importance via gradient computations in order to estimate relevant image regions. The subsequently detected parts are then not only selected by a-posteriori classification knowledge, but also have an intrinsic spatial extent that is determined automatically. This is in contrast to most part-based approaches and even to available ground-truth part annotations, which only provide point coordinates and no additional scale information. We show in our experiments on various widely-used fine-grained datasets the effectiveness of the mentioned part selection method in conjunction with the extracted part features.Comment: Presented at the GCPR201

    No Spare Parts: Sharing Part Detectors for Image Categorization

    Get PDF
    This work aims for image categorization using a representation of distinctive parts. Different from existing part-based work, we argue that parts are naturally shared between image categories and should be modeled as such. We motivate our approach with a quantitative and qualitative analysis by backtracking where selected parts come from. Our analysis shows that in addition to the category parts defining the class, the parts coming from the background context and parts from other image categories improve categorization performance. Part selection should not be done separately for each category, but instead be shared and optimized over all categories. To incorporate part sharing between categories, we present an algorithm based on AdaBoost to jointly optimize part sharing and selection, as well as fusion with the global image representation. We achieve results competitive to the state-of-the-art on object, scene, and action categories, further improving over deep convolutional neural networks

    Subset Feature Learning for Fine-Grained Category Classification

    Full text link
    Fine-grained categorisation has been a challenging problem due to small inter-class variation, large intra-class variation and low number of training images. We propose a learning system which first clusters visually similar classes and then learns deep convolutional neural network features specific to each subset. Experiments on the popular fine-grained Caltech-UCSD bird dataset show that the proposed method outperforms recent fine-grained categorisation methods under the most difficult setting: no bounding boxes are presented at test time. It achieves a mean accuracy of 77.5%, compared to the previous best performance of 73.2%. We also show that progressive transfer learning allows us to first learn domain-generic features (for bird classification) which can then be adapted to specific set of bird classes, yielding improvements in accuracy

    Pairwise Confusion for Fine-Grained Visual Classification

    Full text link
    Fine-Grained Visual Classification (FGVC) datasets contain small sample sizes, along with significant intra-class variation and inter-class similarity. While prior work has addressed intra-class variation using localization and segmentation techniques, inter-class similarity may also affect feature learning and reduce classification performance. In this work, we address this problem using a novel optimization procedure for the end-to-end neural network training on FGVC tasks. Our procedure, called Pairwise Confusion (PC) reduces overfitting by intentionally {introducing confusion} in the activations. With PC regularization, we obtain state-of-the-art performance on six of the most widely-used FGVC datasets and demonstrate improved localization ability. {PC} is easy to implement, does not need excessive hyperparameter tuning during training, and does not add significant overhead during test time.Comment: Camera-Ready version for ECCV 201
    • …
    corecore