1,979 research outputs found

    SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval

    Full text link
    Hashing methods have been widely used for efficient similarity retrieval on large scale image database. Traditional hashing methods learn hash functions to generate binary codes from hand-crafted features, which achieve limited accuracy since the hand-crafted features cannot optimally represent the image content and preserve the semantic similarity. Recently, several deep hashing methods have shown better performance because the deep architectures generate more discriminative feature representations. However, these deep hashing methods are mainly designed for supervised scenarios, which only exploit the semantic similarity information, but ignore the underlying data structures. In this paper, we propose the semi-supervised deep hashing (SSDH) approach, to perform more effective hash function learning by simultaneously preserving semantic similarity and underlying data structures. The main contributions are as follows: (1) We propose a semi-supervised loss to jointly minimize the empirical error on labeled data, as well as the embedding error on both labeled and unlabeled data, which can preserve the semantic similarity and capture the meaningful neighbors on the underlying data structures for effective hashing. (2) A semi-supervised deep hashing network is designed to extensively exploit both labeled and unlabeled data, in which we propose an online graph construction method to benefit from the evolving deep features during training to better capture semantic neighbors. To the best of our knowledge, the proposed deep network is the first deep hashing method that can perform hash code learning and feature learning simultaneously in a semi-supervised fashion. Experimental results on 5 widely-used datasets show that our proposed approach outperforms the state-of-the-art hashing methods.Comment: 14 pages, accepted by IEEE Transactions on Circuits and Systems for Video Technolog

    A Survey on Learning to Hash

    Full text link
    Nearest neighbor search is a problem of finding the data points from the database such that the distances from them to the query point are the smallest. Learning to hash is one of the major solutions to this problem and has been widely studied recently. In this paper, we present a comprehensive survey of the learning to hash algorithms, categorize them according to the manners of preserving the similarities into: pairwise similarity preserving, multiwise similarity preserving, implicit similarity preserving, as well as quantization, and discuss their relations. We separate quantization from pairwise similarity preserving as the objective function is very different though quantization, as we show, can be derived from preserving the pairwise similarities. In addition, we present the evaluation protocols, and the general performance analysis, and point out that the quantization algorithms perform superiorly in terms of search accuracy, search time cost, and space cost. Finally, we introduce a few emerging topics.Comment: To appear in IEEE Transactions On Pattern Analysis and Machine Intelligence (TPAMI

    Learning to Hash for Indexing Big Data - A Survey

    Full text link
    The explosive growth in big data has attracted much attention in designing efficient indexing and search methods recently. In many critical applications such as large-scale search and pattern matching, finding the nearest neighbors to a query is a fundamental research problem. However, the straightforward solution using exhaustive comparison is infeasible due to the prohibitive computational complexity and memory requirement. In response, Approximate Nearest Neighbor (ANN) search based on hashing techniques has become popular due to its promising performance in both efficiency and accuracy. Prior randomized hashing methods, e.g., Locality-Sensitive Hashing (LSH), explore data-independent hash functions with random projections or permutations. Although having elegant theoretic guarantees on the search quality in certain metric spaces, performance of randomized hashing has been shown insufficient in many real-world applications. As a remedy, new approaches incorporating data-driven learning methods in development of advanced hash functions have emerged. Such learning to hash methods exploit information such as data distributions or class labels when optimizing the hash codes or functions. Importantly, the learned hash codes are able to preserve the proximity of neighboring data in the original feature spaces in the hash code spaces. The goal of this paper is to provide readers with systematic understanding of insights, pros and cons of the emerging techniques. We provide a comprehensive survey of the learning to hash framework and representative techniques of various types, including unsupervised, semi-supervised, and supervised. In addition, we also summarize recent hashing approaches utilizing the deep learning models. Finally, we discuss the future direction and trends of research in this area

    Deep Ordinal Hashing with Spatial Attention

    Full text link
    Hashing has attracted increasing research attentions in recent years due to its high efficiency of computation and storage in image retrieval. Recent works have demonstrated the superiority of simultaneous feature representations and hash functions learning with deep neural networks. However, most existing deep hashing methods directly learn the hash functions by encoding the global semantic information, while ignoring the local spatial information of images. The loss of local spatial structure makes the performance bottleneck of hash functions, therefore limiting its application for accurate similarity retrieval. In this work, we propose a novel Deep Ordinal Hashing (DOH) method, which learns ordinal representations by leveraging the ranking structure of feature space from both local and global views. In particular, to effectively build the ranking structure, we propose to learn the rank correlation space by exploiting the local spatial information from Fully Convolutional Network (FCN) and the global semantic information from the Convolutional Neural Network (CNN) simultaneously. More specifically, an effective spatial attention model is designed to capture the local spatial information by selectively learning well-specified locations closely related to target objects. In such hashing framework,the local spatial and global semantic nature of images are captured in an end-to-end ranking-to-hashing manner. Experimental results conducted on three widely-used datasets demonstrate that the proposed DOH method significantly outperforms the state-of-the-art hashing methods

    Query-Adaptive Hash Code Ranking for Large-Scale Multi-View Visual Search

    Full text link
    Hash based nearest neighbor search has become attractive in many applications. However, the quantization in hashing usually degenerates the discriminative power when using Hamming distance ranking. Besides, for large-scale visual search, existing hashing methods cannot directly support the efficient search over the data with multiple sources, and while the literature has shown that adaptively incorporating complementary information from diverse sources or views can significantly boost the search performance. To address the problems, this paper proposes a novel and generic approach to building multiple hash tables with multiple views and generating fine-grained ranking results at bitwise and tablewise levels. For each hash table, a query-adaptive bitwise weighting is introduced to alleviate the quantization loss by simultaneously exploiting the quality of hash functions and their complement for nearest neighbor search. From the tablewise aspect, multiple hash tables are built for different data views as a joint index, over which a query-specific rank fusion is proposed to rerank all results from the bitwise ranking by diffusing in a graph. Comprehensive experiments on image search over three well-known benchmarks show that the proposed method achieves up to 17.11% and 20.28% performance gains on single and multiple table search over state-of-the-art methods

    Shared Predictive Cross-Modal Deep Quantization

    Full text link
    With explosive growth of data volume and ever-increasing diversity of data modalities, cross-modal similarity search, which conducts nearest neighbor search across different modalities, has been attracting increasing interest. This paper presents a deep compact code learning solution for efficient cross-modal similarity search. Many recent studies have proven that quantization-based approaches perform generally better than hashing-based approaches on single-modal similarity search. In this paper, we propose a deep quantization approach, which is among the early attempts of leveraging deep neural networks into quantization-based cross-modal similarity search. Our approach, dubbed shared predictive deep quantization (SPDQ), explicitly formulates a shared subspace across different modalities and two private subspaces for individual modalities, and representations in the shared subspace and the private subspaces are learned simultaneously by embedding them to a reproducing kernel Hilbert space, where the mean embedding of different modality distributions can be explicitly compared. In addition, in the shared subspace, a quantizer is learned to produce the semantics preserving compact codes with the help of label alignment. Thanks to this novel network architecture in cooperation with supervised quantization training, SPDQ can preserve intramodal and intermodal similarities as much as possible and greatly reduce quantization error. Experiments on two popular benchmarks corroborate that our approach outperforms state-of-the-art methods

    Recent Advance in Content-based Image Retrieval: A Literature Survey

    Full text link
    The explosive increase and ubiquitous accessibility of visual data on the Web have led to the prosperity of research activity in image search or retrieval. With the ignorance of visual content as a ranking clue, methods with text search techniques for visual retrieval may suffer inconsistency between the text words and visual content. Content-based image retrieval (CBIR), which makes use of the representation of visual content to identify relevant images, has attracted sustained attention in recent two decades. Such a problem is challenging due to the intention gap and the semantic gap problems. Numerous techniques have been developed for content-based image retrieval in the last decade. The purpose of this paper is to categorize and evaluate those algorithms proposed during the period of 2003 to 2016. We conclude with several promising directions for future research.Comment: 22 page

    Exploring Auxiliary Context: Discrete Semantic Transfer Hashing for Scalable Image Retrieval

    Full text link
    Unsupervised hashing can desirably support scalable content-based image retrieval (SCBIR) for its appealing advantages of semantic label independence, memory and search efficiency. However, the learned hash codes are embedded with limited discriminative semantics due to the intrinsic limitation of image representation. To address the problem, in this paper, we propose a novel hashing approach, dubbed as \emph{Discrete Semantic Transfer Hashing} (DSTH). The key idea is to \emph{directly} augment the semantics of discrete image hash codes by exploring auxiliary contextual modalities. To this end, a unified hashing framework is formulated to simultaneously preserve visual similarities of images and perform semantic transfer from contextual modalities. Further, to guarantee direct semantic transfer and avoid information loss, we explicitly impose the discrete constraint, bit--uncorrelation constraint and bit-balance constraint on hash codes. A novel and effective discrete optimization method based on augmented Lagrangian multiplier is developed to iteratively solve the optimization problem. The whole learning process has linear computation complexity and desirable scalability. Experiments on three benchmark datasets demonstrate the superiority of DSTH compared with several state-of-the-art approaches

    Learning A Deep ℓ∞\ell_\infty Encoder for Hashing

    Full text link
    We investigate the ℓ∞\ell_\infty-constrained representation which demonstrates robustness to quantization errors, utilizing the tool of deep learning. Based on the Alternating Direction Method of Multipliers (ADMM), we formulate the original convex minimization problem as a feed-forward neural network, named \textit{Deep ℓ∞\ell_\infty Encoder}, by introducing the novel Bounded Linear Unit (BLU) neuron and modeling the Lagrange multipliers as network biases. Such a structural prior acts as an effective network regularization, and facilitates the model initialization. We then investigate the effective use of the proposed model in the application of hashing, by coupling the proposed encoders under a supervised pairwise loss, to develop a \textit{Deep Siamese ℓ∞\ell_\infty Network}, which can be optimized from end to end. Extensive experiments demonstrate the impressive performances of the proposed model. We also provide an in-depth analysis of its behaviors against the competitors.Comment: To be presented at IJCAI'1

    Binary Generative Adversarial Networks for Image Retrieval

    Full text link
    The most striking successes in image retrieval using deep hashing have mostly involved discriminative models, which require labels. In this paper, we use binary generative adversarial networks (BGAN) to embed images to binary codes in an unsupervised way. By restricting the input noise variable of generative adversarial networks (GAN) to be binary and conditioned on the features of each input image, BGAN can simultaneously learn a binary representation per image, and generate an image plausibly similar to the original one. In the proposed framework, we address two main problems: 1) how to directly generate binary codes without relaxation? 2) how to equip the binary representation with the ability of accurate image retrieval? We resolve these problems by proposing new sign-activation strategy and a loss function steering the learning process, which consists of new models for adversarial loss, a content loss, and a neighborhood structure loss. Experimental results on standard datasets (CIFAR-10, NUSWIDE, and Flickr) demonstrate that our BGAN significantly outperforms existing hashing methods by up to 107\% in terms of~mAP (See Table tab.res.map.comp) Our anonymous code is available at: https://github.com/htconquer/BGAN.Comment: arXiv admin note: text overlap with arXiv:1702.00758 by other author
    • …
    corecore