2,101 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    An investigation into machine learning approaches for forecasting spatio-temporal demand in ride-hailing service

    Full text link
    In this paper, we present machine learning approaches for characterizing and forecasting the short-term demand for on-demand ride-hailing services. We propose the spatio-temporal estimation of the demand that is a function of variable effects related to traffic, pricing and weather conditions. With respect to the methodology, a single decision tree, bootstrap-aggregated (bagged) decision trees, random forest, boosted decision trees, and artificial neural network for regression have been adapted and systematically compared using various statistics, e.g. R-square, Root Mean Square Error (RMSE), and slope. To better assess the quality of the models, they have been tested on a real case study using the data of DiDi Chuxing, the main on-demand ride hailing service provider in China. In the current study, 199,584 time-slots describing the spatio-temporal ride-hailing demand has been extracted with an aggregated-time interval of 10 mins. All the methods are trained and validated on the basis of two independent samples from this dataset. The results revealed that boosted decision trees provide the best prediction accuracy (RMSE=16.41), while avoiding the risk of over-fitting, followed by artificial neural network (20.09), random forest (23.50), bagged decision trees (24.29) and single decision tree (33.55).Comment: Currently under review for journal publicatio

    On pruning and feature engineering in Random Forests.

    Get PDF
    Random Forest (RF) is an ensemble classification technique that was developed by Leo Breiman over a decade ago. Compared with other ensemble techniques, it has proved its accuracy and superiority. Many researchers, however, believe that there is still room for optimizing RF further by enhancing and improving its performance accuracy. This explains why there have been many extensions of RF where each extension employed a variety of techniques and strategies to improve certain aspect(s) of RF. The main focus of this dissertation is to develop new extensions of RF using new optimization techniques that, to the best of our knowledge, have never been used before to optimize RF. These techniques are clustering, the local outlier factor, diversified weighted subspaces, and replicator dynamics. Applying these techniques on RF produced four extensions which we have termed CLUB-DRF, LOFB-DRF, DSB-RF, and RDB-DR respectively. Experimental studies on 15 real datasets showed favorable results, demonstrating the potential of the proposed methods. Performance-wise, CLUB-DRF is ranked first in terms of accuracy and classifcation speed making it ideal for real-time applications, and for machines/devices with limited memory and processing power

    A weighted multiple classifier framework based on random projection.

    Get PDF
    In this paper, we propose a weighted multiple classifier framework based on random projections. Similar to the mechanism of other homogeneous ensemble methods, the base classifiers in our approach are obtained by a learning algorithm on different training sets generated by projecting the original up-space training set to lower dimensional down-spaces. We then apply a Least SquarE−based method to weigh the outputs of the base classifiers so that the contribution of each classifier to the final combined prediction is different. We choose Decision Tree as the learning algorithm in the proposed framework and conduct experiments on a number of real and synthetic datasets. The experimental results indicate that our framework is better than many of the benchmark algorithms, including three homogeneous ensemble methods (Bagging, RotBoost, and Random Subspace), several well-known algorithms (Decision Tree, Random Neural Network, Linear Discriminative Analysis, K Nearest Neighbor, L2-loss Linear Support Vector Machine, and Discriminative Restricted Boltzmann Machine), and random projection-based ensembles with fixed combining rules with regard to both classification error rates and F1 scores

    Extremely randomized trees

    Full text link
    This paper proposes anew tree-based ensemble method for supervised classification and regression problems. It essentially consists of randomizing strongly both attribute and cut-point choice while splitting a tree node. In the extreme case, it builds totally randomized trees whose structures are independent of the output values of the learning sample. The strength of the randomization can be tuned to problem specifics by the appropriate choice of a parameter. We evaluate the robustness of the default choice of this parameter, and we also provide insight on how to adjust it in particular situations. Besides accuracy, the main strength of the resulting algorithm is computational efficiency. A bias/variance analysis of the Extra-Trees algorithm is also provided as well as a geometrical and a kernel characterization of the models induced.Peer reviewe
    • …
    corecore