10 research outputs found

    A Classification of 3R Orthogonal Manipulators by the Topology of their Workspace

    Get PDF
    International audienceA classification of a family of 3-revolute (3R) positining manipulators is established. This classification is based on the topology of their workspace. The workspace is characterized in a half-cross section by the singular curves. The workspace topology is defined by the number of cusps and nodes that appear on these singular curves. The design parameters space is shown to be divided into nine domains of distinct workspace topologies, in which all manipulators have similar global kinematic properties. Each separating surface is given as an explicit expression in the DH-parameters

    A DH-parameter based condition for 3R orthogonal manipulators to have 4 distinct inverse kinematic solutions

    Get PDF
    International audiencePositioning 3R manipulators may have two or four inverse kinematic solutions (IKS). This paper derives a necessary and sufficient condition for 3R positioning manipulators with orthogonal joint axes to have four distinct IKS. We show that the transition between manipulators with 2 and 4 IKS is defined by the set of manipulators with a quadruple root of their inverse kinematics. The resulting condition is explicit and states that the last link length of the manipulator must be greater than a quantity that depends on three of its remaining DH-parameters. This result is of interest for the design of new manipulators

    An Exhaustive Study of the Workspace Topologies of all 3R Orthogonal Manipulators with Geometric Simplifications

    Get PDF
    International audienceThis paper analyses the workspace of the three-revolute orthogonal manipulators that have at least one of their DH parameters equal to zero. These manipulators are classified into different groups with similar kinematic properties. The classification criteria are based on the topology of the workspace. Each group is evaluated according to interesting kinematic properties such as the size of the workspace subregion reachable with four inverse kinematic solutions, the existence and the size of voids, and the size of the regions of feasible paths in the workspace

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    An Exhaustive Study of the Workspaces Tolopogies of all 3R Orthogonal Manipulators with Geometric Simplifications

    Get PDF
    International audienceThis paper proposes a classification of three-revolute orthogonal manipulators that have at least one of their DH parameters equal to zero. This classification is based on the topology of their workspace. The workspace is characterized in a half-cross section by the singular curves. The workspace topology is defined by the number of cusps and nodes that appear on these singular curves. The manipulators are classified into different types with similar kinematic properties. Each type is evaluated according to interesting kinematic properties such as, whether the workspace is fully reachable with four inverse kinematic solutions or not, the existence of voids, and the feasibility of continuous trajectories in the workspace. It is found that several orthogonal manipulators have a "well-connected" workspace, that is, their workspace is fully accessible with four inverse kinematic solutions and any continuous trajectory is feasible. This result is of interest for the design of alternative manipulator geometries
    corecore