2 research outputs found

    Classification of multi-channels SEMG signals using wavelet and neural networks on assistive robot

    No full text
    Recently, the robot technology research is changing from manufacturing industry to non-manufacturing industry, especially the service industry related to the human life. Assistive robot is a kind of novel service robot. It can not only help the elder and disabled people to rehabilitate their impaired musculoskeletal functions, but also help healthy people to perform tasks requiring large forces. This kind of robot has a broad application prospect in many areas, such as medical rehabilitation, special military operations, special/high intensity physical labour, space, sports, and entertainment. SEMG (Surface Electromyography) of Palmaris longus, brachioradialis, flexor carpiulnaris and biceps brachii are analysed with a wavelet transform method. The absolute variance of 3-layer wavelet coefficients is distilled and regarded as signal characteristics to compose eigenvectors. The eigenvectors are input data of a neural network classifier used to identify 5 different kinds of movement patterns including wrist flexor, wrist extensor, elbow flexion, forearm pronation and forearm rotation. Experiments verify the effectiveness of the proposed method

    Fuzzy optimisation based symbolic grounding for service robots

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophySymbolic grounding is a bridge between task level planning and actual robot sensing and actuation. Uncertainties raised by unstructured environments make a bottleneck for integrating traditional artificial intelligence with service robotics. In this research, a fuzzy optimisation based symbolic grounding approach is presented. This approach can handle uncertainties and helps service robots to determine the most comfortable base region for grasping objects in a fetch and carry task. Novel techniques are applied to establish fuzzy objective function, to model fuzzy constraints and to perform fuzzy optimisation. The approach does not have the short comings of others’ work and the computation time is dramatically reduced in compare with other methods. The advantages of the proposed fuzzy optimisation based approach are evidenced by experiments that were undertaken in Care-O-bot 3 (COB 3) and Robot Operating System (ROS) platforms
    corecore