3 research outputs found

    Automotive system for remote surface classification

    Get PDF
    In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions

    Classification of textured surfaces for robot navigation using continuous transmission frequency-modulated sonar signatures

    No full text
    Whereas in the past ultrasonic sensors have been largely used only to estimate the proximity of objects and the location and identification of primitive targets in a robot workspace, the development of biomimetic sonar has opened up new possibilities for their application. Broadband sonar echoes have sufficient resolution so that characteristics on reflection, especially geometry and texture, can be distinguished with only a few measurements. In this paper, we describe how a model of texture can be used to distinguish between a number of different surfaces using only a single measurement of each, showing results on a number of surfaces that might be considered typical pathways for a mobile robot, both those with periodicity in pattern and those with statistically homogeneous features. In particular, we consider textures corresponding to hard smooth floors, carpets and asphalts, and surfaces with a repeating pattern made up of tiles. Each random rough surface is modeled using an extension of the Kirchhoff approximation method describing the scattering of the acoustic wave on the surface while the periodic surfaces are modeled assuming distinctive reflections from the tile borders. The continuous transmission frequency-modulated sonar signature corresponding to each class is derived and compared with the experimental measurement. A set of features is extracted that exploits the differences between the surface models, and a hierarchical classification scheme is proposed for recognition
    corecore