68 research outputs found

    Visual to Sound: Generating Natural Sound for Videos in the Wild

    Full text link
    As two of the five traditional human senses (sight, hearing, taste, smell, and touch), vision and sound are basic sources through which humans understand the world. Often correlated during natural events, these two modalities combine to jointly affect human perception. In this paper, we pose the task of generating sound given visual input. Such capabilities could help enable applications in virtual reality (generating sound for virtual scenes automatically) or provide additional accessibility to images or videos for people with visual impairments. As a first step in this direction, we apply learning-based methods to generate raw waveform samples given input video frames. We evaluate our models on a dataset of videos containing a variety of sounds (such as ambient sounds and sounds from people/animals). Our experiments show that the generated sounds are fairly realistic and have good temporal synchronization with the visual inputs.Comment: Project page: http://bvision11.cs.unc.edu/bigpen/yipin/visual2sound_webpage/visual2sound.htm

    Detection of severe obstructive sleep apnea through voice analysis

    Get PDF
    tThis paper deals with the potential and limitations of using voice and speech processing to detect Obstruc-tive Sleep Apnea (OSA). An extensive body of voice features has been extracted from patients whopresent various degrees of OSA as well as healthy controls. We analyse the utility of a reduced set offeatures for detecting OSA. We apply various feature selection and reduction schemes (statistical rank-ing, Genetic Algorithms, PCA, LDA) and compare various classifiers (Bayesian Classifiers, kNN, SupportVector Machines, neural networks, Adaboost). S-fold crossvalidation performed on 248 subjects showsthat in the extreme cases (that is, 127 controls and 121 patients with severe OSA) voice alone is able todiscriminate quite well between the presence and absence of OSA. However, this is not the case withmild OSA and healthy snoring patients where voice seems to play a secondary role. We found that thebest classification schemes are achieved using a Genetic Algorithm for feature selection/reduction

    Usefulness of Artificial Neural Networks in the Diagnosis and Treatment of Sleep Apnea-Hypopnea Syndrome

    Get PDF
    Sleep apnea-hypopnea syndrome (SAHS) is a chronic and highly prevalent disease considered a major health problem in industrialized countries. The gold standard diagnostic methodology is in-laboratory nocturnal polysomnography (PSG), which is complex, costly, and time consuming. In order to overcome these limitations, novel and simplified diagnostic alternatives are demanded. Sleep scientists carried out an exhaustive research during the last decades focused on the design of automated expert systems derived from artificial intelligence able to help sleep specialists in their daily practice. Among automated pattern recognition techniques, artificial neural networks (ANNs) have demonstrated to be efficient and accurate algorithms in order to implement computer-aided diagnosis systems aimed at assisting physicians in the management of SAHS. In this regard, several applications of ANNs have been developed, such as classification of patients suspected of suffering from SAHS, apnea-hypopnea index (AHI) prediction, detection and quantification of respiratory events, apneic events classification, automated sleep staging and arousal detection, alertness monitoring systems, and airflow pressure optimization in positive airway pressure (PAP) devices to fit patients’ needs. In the present research, current applications of ANNs in the framework of SAHS management are thoroughly reviewed

    Oximetry use in obstructive sleep apnea

    Get PDF
    Producción CientíficaIntroduction. Overnight oximetry has been proposed as an accessible, simple, and reliable technique for obstructive sleep apnea syndrome (OSAS) diagnosis. From visual inspection to advanced signal processing, several studies have demonstrated the usefulness of oximetry as a screening tool. However, there is still controversy regarding the general application of oximetry as a single screening methodology for OSAS. Areas covered. Currently, high-resolution portable devices combined with pattern recognition-based applications are able to achieve high performance in the detection this disease. In this review, recent studies involving automated analysis of oximetry by means of advanced signal processing and machine learning algorithms are analyzed. Advantages and limitations are highlighted and novel research lines aimed at improving the screening ability of oximetry are proposed. Expert commentary. Oximetry is a cost-effective tool for OSAS screening in patients showing high pretest probability for the disease. Nevertheless, exhaustive analyses are still needed to further assess unattended oximetry monitoring as a single diagnostic test for sleep apnea, particularly in the pediatric population and in especial groups with significant comorbidities. In the following years, communication technologies and big data analysis will overcome current limitations of simplified sleep testing approaches, changing the detection and management of OSAS.This research has been partially supported by the projects DPI2017-84280-R and RTC-2015-3446-1 from Ministerio de Economía, Industria y Competitividad and European Regional Development Fund (FEDER), the project 66/2016 of the Sociedad Española de Neumología y Cirugía Torácica (SEPAR), and the project VA037U16 from the Consejería de Educación de la Junta de Castilla y León and FEDER. D. Álvarez was in receipt of a Juan de la Cierva grant IJCI-2014-22664 from the Ministerio de Economía y Competitividad

    Data-Driven Audio Feature Space Clustering for Automatic Sound Recognition in Radio Broadcast News

    Get PDF
    This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is permitted, provided the original work is properly cited. T. Theodorou, I. Mpoas, A. Lazaridis, N. Fakotakis, 'Data-Driven Audio Feature Space Clustering for Automatic Sound Recognition in Radio Broadcast News', International Journal on Artificial Intelligence Tools, Vol. 26 (2), April 2017, 1750005 (13 pages), DOI: 10.1142/S021821301750005. © The Author(s).In this paper we describe an automatic sound recognition scheme for radio broadcast news based on principal component clustering with respect to the discrimination ability of the principal components. Specifically, streams of broadcast news transmissions, labeled based on the audio event, are decomposed using a large set of audio descriptors and project into the principal component space. A data-driven algorithm clusters the relevance of the components. The component subspaces are used by sound type classifier. This methodology showed that the k-nearest neighbor and the artificial intelligent network provide good results. Also, this methodology showed that discarding unnecessary dimension works in favor on the outcome, as it hardly deteriorates the effectiveness of the algorithms.Peer reviewe

    Assessment of Time and Frequency Domain Entropies to Detect Sleep Apnoea in Heart Rate Variability Recordings from Men and Women

    Get PDF
    Producción CientíficaHeart rate variability (HRV) provides useful information about heart dynamics both under healthy and pathological conditions. Entropy measures have shown their utility to characterize these dynamics. In this paper, we assess the ability of spectral entropy (SE) and multiscale entropy (MsE) to characterize the sleep apnoea-hypopnea syndrome (SAHS) in HRV recordings from 188 subjects. Additionally, we evaluate eventual differences in these analyses depending on the gender. We found that the SE computed from the very low frequency band and the low frequency band showed ability to characterize SAHS regardless the gender; and that MsE features may be able to distinguish gender specificities. SE and MsE showed complementarity to detect SAHS, since several features from both analyses were automatically selected by the forward-selection backward-elimination algorithm. Finally, SAHS was modelled through logistic regression (LR) by using optimum sets of selected features. Modelling SAHS by genders reached significant higher performance than doing it in a jointly way. The highest diagnostic ability was reached by modelling SAHS in women. The LR classifier achieved 85.2% accuracy (Acc) and 0.951 area under the ROC curve (AROC). LR for men reached 77.6% Acc and 0.895 AROC, whereas LR for the whole set reached 72.3% Acc and 0.885 AROC. Our results show the usefulness of the SE and MsE analyses of HRV to detect SAHS, as well as suggest that, when using HRV, SAHS may be more accurately modelled if data are separated by gender.Ministerio de Economía, Industria y Competitividad (TEC2011-22987)Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA059U13

    An algorithm for heart rate extraction from acoustic recordings at the neck

    No full text
    Heart rate is an important physiological parameter to assess the cardiac condition of an individual and is traditionally determined by attaching multiple electrodes on the chest of a subject to record the electrical activity of the heart. The installation and handling complexities of such systems does not prove feasible for a user to undergo a long-term monitoring in the home settings. A small-sized, battery-operated wearable monitoring device is placed on the suprasternal notch at neck to record acoustic signals containing information about breathing and cardiac sounds. The heart sounds obtained are heavily corrupted by the respiratory cycles and other external artifacts. This paper presents a novel algorithm for reliably extracting the heart rate from such acoustic recordings, keeping in mind the constraints posed by the wearable technology. The methodology constructs the Hilbert energy envelope of the signal by calculating its instantaneous characteristics to segment and classify a cardiac cycle into S1 and S2 sounds using their timing characteristics. The algorithm is tested on a dataset consisting of 13 subjects with an approximate data length of 75 hours and achieves an accuracy of 94.34%, an RMS error of 3.96 bpm and a correlation coefficient of 0.93 with reference to a commercial device in use

    Multimedia sensors embedded in smartphones for ambient assisted living and e-health

    Full text link
    The final publication is available at link.springer.com[EN] Nowadays, it is widely extended the use of smartphones to make human life more comfortable. Moreover, there is a special interest on Ambient Assisted Living (AAL) and e-Health applications. The sensor technology is growing and amount of embedded sensors in the smartphones can be very useful for AAL and e-Health. While some sensors like the accelerometer, gyroscope or light sensor are very used in applications such as motion detection or light meter, there are other ones, like the microphone and camera which can be used as multimedia sensors. This paper reviews the published papers focused on showing proposals, designs and deployments of that make use of multimedia sensors for AAL and e-health. We have classified them as a function of their main use. They are the sound gathered by the microphone and image recorded by the camera. We also include a comparative table and analyze the gathered information.Parra-Boronat, L.; Sendra, S.; Jimenez, JM.; Lloret, J. (2016). Multimedia sensors embedded in smartphones for ambient assisted living and e-health. Multimedia Tools and Applications. 75(21):13271-13297. doi:10.1007/s11042-015-2745-8S13271132977521Acampora G, Cook DJ, Rashidi P, Vasilakos AV (2013) A survey on ambient intelligence in healthcare. Proc IEEE 101(12):2470–2494Al-Attas R, Yassine A, Shirmohammadi S (2012) Tele-Medical Applications in Home-Based Health Care. In proceeding of the 2012 I.E. International Conference on Multimedia and Expo Workshops (ICMEW 2012). Jul. 9–13, 2012. Melbourne, Australia. (pp. 441–446)Alemdar H, Ersoy C (2010) Wireless sensor networks for healthcare: a survey. Comput Netw 54(15):2688–2710Alqassim S, Ganesh M, Khoja S, Zaidi M, Aloul F, Sagahyroon A (2012) Sleep apnea monitoring using mobile phones. In proceedings of the 14th International Conference on e-Health Networking, Applications and Services (Healthcom 2012). Oct. 10 – 13, 2012. Beijing, China. (pp. 443–446)Anderson G, Horvath J (2004) The growing burden of chronic disease in America. Public Health Rep 119(3):263–270Aquilano M, Cavallo F, Bonaccorsi M, Esposito R, Rovini E, Filippi M, Carrozza MC (2012) Ambient assisted living and ageing: Preliminary results of RITA project. In proceedings of 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2012), Aug. 28-Sept. 1, 2012. San Diego USA. (pp. 5823–5826)Bellini P, Bruno I, Cenni D, Fuzier A, Nesi P, Paolucci M (2012) Mobile Medicine: semantic computing management for health care applications on desktop and mobile devices. Multimed Tools Appl 58(1):41–79Boulos MN, Wheeler S, Tavares C, Jones R (2011) How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX. Biomed Eng Online 10(1):24Bourouis A, Feham M, Hossain MA, Zhang L (2014) An intelligent mobile based decision support system for retinal disease diagnosis. Decis Support Syst 59(2014):341–350Bourouis A, Zerdazi A, Feham M, Bouchachia A (2013) M-health: skin disease analysis system using Smartphone’s camera. Procedia Comput Sci 19(2013):1116–1120M.W. Brault, (2010). Americans With Disabilities: 2010. Household Economic Studies. In United States Census Bureau website. Available at: www.census.gov/prod/2012pubs/p70-131.pdf Last Access 16 Dec 2014Breath Counter App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=com.softrove.app.bc Last Access 30 Nov 2014Cardinaux F, Bhowmik D, Abhayaratne C, Hawley MS (2011) Video based technology for ambient assisted living: a review of the literature. J Ambient Intell Smart Environ 3(3):253–269Cardiograph App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=com.macropinch.hydra.android . Last Access 30 Nov 2014Chaaraoui AA, Climent-Pérez P, Flórez-Revuelta F (2012) A review on vision techniques applied to human behaviour analysis for ambient-assisted living. Expert Syst Appl 39(12):10873–10888Chen NC, Wang KC, Chu HH (2012) Listen-to-nose: a low-cost system to record nasal symptoms in daily life. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (UBIComp 2012). Sep. 05–08, 2012. Pittsburgh, USA. (pp. 590–591)Chiarini G, Ray P, Akter S, Masella C, Ganz A (2013) mHealth technologies for chronic diseases and elders: a systematic review. IEEE J Sel Areas Commun 31(9):6–18Color Detector App In Google Play website. Available at: //play.google.com/store/apps/details?id = com.mobialia.colordetector. Last Access 30 Nov 2014Colorblind Assitant App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=com.unclechromedome.colorblindassistant . Last Access 30 Nov 2014Dale O, Solheim I, Halbach T, Schulz T, Spiru L, Turcu I (2013) What seniors want in a mobile Help-On-Demand service. In proceedings of the Fifth International Conference on eHealth, Telemedicine, and Social Medicine (eTELEMED 2013). Feb. 24 – Mar. 1, 2013. Nice, France. (pp. 96–101)Estepa AJ, Estepa R, Vozmediano J, Carrillo P (2014) Dynamic VoIP codec selection on smartphones. Netw Protoc Algoritm 6(2):22–37Falk TH, Maier M (2013) Context awareness in WBANs: a survey on medical and non-medical applications. IEEE Wirel Commun 20(4):30–37Franco C, Fleury A, Guméry PY, Diot B, Demongeot J, Vuillerme N (2013) iBalance-ABF: a smartphone-based audio-biofeedback balance system. IEEE Trans Biomed Eng 60(1):211–215García M, Lloret J, Bellver I, Tomás J (2013) Intelligent IPTV Distribution for Smart Phones (Book Chapter 13). In Intelligent Multimedia Technologies for Networking Applications. IGI GlobalGregoski MJ, Mueller M, Vertegel A, Shaporev A, Jackson BB, Frenzel RM, Treiber FA (2012) Development and validation of a smartphone heart rate acquisition application for health promotion and wellness telehealth applications. Int J Telemed Appl 2012, 1. Article ID 696324Grimaldi D, Kurylyak Y, Lamonaca F, Nastro A (2011) Photoplethysmography detection by smartphone’s videocamera. In proceedings of the 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IEEE IDAACS 2011), Sep. 15–17, 2011. Prague, Czech Republic. (Vol. 1, pp. 488–491)Gurrin C, Qiu Z, Hughes M, Caprani N, Doherty AR, Hodges SE, Smeaton AF (2013) The smartphone as a platform for wearable cameras in health research. Am J Prev Med 44(3):308–313Haché G, Lemaire ED, Baddour N (2011) Wearable mobility monitoring using a multimedia smartphone platform. IEEE Trans Instrum Meas 60(9):3153–3161Heathers JA (2013) Smartphone-enabled pulse rate variability: an alternative methodology for the collection of heart rate variability in psychophysiological research. Int J Psychophysiol 89(3):297–304Hoseini-Tabatabaei SA, Gluhak A, Tafazolli R (2013) A survey on smartphone-based systems for opportunistic user context recognition. ACM Comput Surv (CSUR) 45(3):1–51, Paper No. 27Illiger K, Hupka M, von Jan U, Wichelhaus D, Albrecht UV (2014) Mobile technologies: expectancy, usage, and acceptance of clinical staff and patients at a University Medical Center. JMIR mHealth uHealth 2(4), e42Kanjo E (2012) Tools and architectural support for mobile phones based crowd control systems. Netw Protoc Algoritm 4(3):4–14Kawano Y, Yanai K (2014) FoodCam: a real-time food recognition system on a smartphone. Multimedia Tools and Applications,Published online:April 2014: 1–25Khan FH, Khan ZH (2010) A systematic approach for developing mobile information system based on location based services. Netw Protoc Algoritm 2(2):54–65Kochanov D, Jonas S, Hamadeh N, Yalvac E, Slijp H, Deserno TM (2014) Urban Positioning Using Smartphone-Based Imaging. In Bildverarbeitung für die Medizin, 2014: 186–191Kurniawan S (2008) Older people and mobile phones: a multi-method investigation. Int J Human-Comput Stud 66(12):889–901Lacuesta R, Lloret J, Sendra S, Peñalver L (2014) Spontaneous Ad Hoc mobile cloud computing network. Sci World J 2014:1–19Lakens D (2013) Using a Smartphone to measure heart rate changes during relived happiness and anger. IEEE Trans Affect Comput 5(3):217–226Larson EC, Goel M, Boriello G, Heltshe S, Rosenfeld M, Patel SN (2012) Spirosmart: using a microphone to measure lung function on a mobile phone, In proceedings of the 2012 ACM Conference on Ubiquitous Computing (UBIComp 2012). Sep. 05–08, 2012. Pittsburgh, USA. (pp. 280–289)Lee J, Reyes BA, McManus DD, Mathias O, Chon KH (2012) Atrial fibrillation detection using a smart phone. In proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2012). Aug.28-Sep.1, 2012. San Diego, (pp. 1177–1180)Lloret J, Garcia M, Bri D, Diaz JR (2009) A cluster-based architecture to structure the topology of parallel wireless sensor networks. Sensors (Basel) 9(12):10513–10544Lu H, Frauendorfer D, Rabbi M, Mast MS, Chittaranjan GT, Campbell AT, Gatica-Perez D, Choudhury T (2012) StressSense: detecting stress in unconstrained acoustic environments using smartphones. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (UBIComp 2012). Sep. 05–08, 2012. Pittsburgh, USA. (pp. 351–360)Macías E, Abdelfatah H, Suárez A, Cánovas A (2011) Full geo-localized mobile video in Android mobile telephones. Netw Protoc Algoritm 3(1):64–81Macias E, Lloret J, Suarez A, Garcia M (2012) Architecture and protocol of a semantic system designed for video tagging with sensor data in mobile devices. Sensors 12(2):2062–2087Macias E, Suarez A, Lloret J (2013) Mobile sensing systems. Sensors 13(12):17292–17321MedCam App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=com.cupel.MedCam . Last Access 30 Nov 2014Monteiro DM, Rodrigues JJ, Lloret J, Sendra S (2014) A hybrid NFC–Bluetooth secure protocol for Credit Transfer among mobile phones. Secur Commun Netw 7(2):325–337Mosa ASM, Yoo I, Sheets L (2012) A systematic review of healthcare applications for smartphones. BMC Med Inform Decis Mak 12(1):67MyEarDroid App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=com.tecnalia.health.myeardroid . Last Access 30 Nov 2014O’Grady MJ, Muldoon C, Dragone M, Tynan R, O’Hare GM (2010) Towards evolutionary ambient assisted living systems. J Ambient Intell Humaniz Comput 1(1):15–29Poppe R (2010) A survey on vision-based human action recognition. Image Vis Comput 28(6):976–990Quit Snoring App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=com.ptech_hm.qs . Last Access 30 Nov 2014Rahman MA, Hossain MS, El Saddik A (2013) Context-aware multimedia services modeling: an e-Health perspective. Multimed Tools Appl 73(3):1147–1176Sendra S, Granell E, Lloret J, Rodrigues JJPC (2014) Smart collaborative mobile system for taking care of disabled and elderly people. Mob Netw Appl 19(3):287–302Smartphone Milestone: Half of Mobile Subscribers Ages 55+ Own Smartphones Mobile. Online report.(April 22,2014). In the Nielsen Company website. Available at: http://www.nielsen.com/us/en/insights/news/2014/smartphone-milestone-half-of-americans-ages-55-own-smartphones.html Last Access 25 Nov 2014Smith A (2013) Smartphone Ownership 2013. On-line Report June 5, 2013. In Pew Research Center’s Internet & American Life Project website. Available at: http://www.pewinternet.org/2013/06/05/smartphone-ownership-2013/ Last Access 25 Nov 2014SnoreClock App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=de.ralphsapps.snorecontrol Last Access 30 Nov 2014Storf H, Kleinberger T, Becker M, Schmitt M, Bomarius F, Prueckner S (2009) An event-driven approach to activity recognition in ambient assisted living. Lect Notes Comput Sci 5859:123–132Su X, Tong H, Ji P (2014) Activity recognition with smartphone sensors. Tsinghua Sci Technol 19(3):235–249Tapu R, Mocanu B, Bursuc A, Zaharia T (2013) A smartphone-based obstacle detection and classification system for assisting visually impaired people. In proceedings of the 2013 I.E. International Conference on Computer Vision Workshops (ICCVW 2013). Dec. 2–8, 2013. Sydney, Australia. (pp. 444–451)The vOICe for Android App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=vOICe.vOICe . Last Access 30 Nov 2014Tudzarov A, Janevski T (2011) Protocols and algorithms for the next generation 5G mobile systems. Netw Protoc Algoritm 3(1):94–114Tyagi A, Miller K, Cockburn M (2012) e-Health tools for targeting and improving melanoma screening: a review. J Skin Cancer 2012, Article ID 437502Voice Cam for Blind App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=com.prod.voice.cam Last Access 30 Nov 2014Wadhawan T, Situ N, Rui H, Lancaster K, Yuan X, Zouridakis G (2011) Implementation of the 7-point checklist for melanoma detection on smart handheld devices. In proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (EMBC 2011). Aug. 30- Sep 03, 2011. Boston, MA, USA (pp. 3180–3183)Xiong H, Zhang D, Zhang D, Gauthier V (2012) Predicting mobile phone user locations by exploiting collective behavioral patterns. In proceedings of the 9th International Conference on Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic & Trusted Computing (UIC/ATC). 4–7 Sept. 2012. Fukuoka, Japan. (pp. 164–171)Xu X, Shu L, Guizani M, Liu M, Lu J (2014) A survey on energy harvesting and integrated data sharing in wireless body area networks. Int J Distrib Sens Netw. Article ID 438695Yu W, Su X, Hansen J (2012) A smartphone design approach to user communication interface for administering storage system network. Netw Protoc Algoritm 4(4):126–155Zhang D, Vasilakos AV, Xiong H (2012) Predicting location using mobile phone calls. ACM SIGCOMM Comput Commun Rev 42(4):295–296Zhang D, Xiong H, Yang L, Gauither V (2013) NextCell: predicting location using social interplay from cell phone traces. EEE Trans Comput 64(2):452–46

    Towards using Cough for Respiratory Disease Diagnosis by leveraging Artificial Intelligence: A Survey

    Full text link
    Cough acoustics contain multitudes of vital information about pathomorphological alterations in the respiratory system. Reliable and accurate detection of cough events by investigating the underlying cough latent features and disease diagnosis can play an indispensable role in revitalizing the healthcare practices. The recent application of Artificial Intelligence (AI) and advances of ubiquitous computing for respiratory disease prediction has created an auspicious trend and myriad of future possibilities in the medical domain. In particular, there is an expeditiously emerging trend of Machine learning (ML) and Deep Learning (DL)-based diagnostic algorithms exploiting cough signatures. The enormous body of literature on cough-based AI algorithms demonstrate that these models can play a significant role for detecting the onset of a specific respiratory disease. However, it is pertinent to collect the information from all relevant studies in an exhaustive manner for the medical experts and AI scientists to analyze the decisive role of AI/ML. This survey offers a comprehensive overview of the cough data-driven ML/DL detection and preliminary diagnosis frameworks, along with a detailed list of significant features. We investigate the mechanism that causes cough and the latent cough features of the respiratory modalities. We also analyze the customized cough monitoring application, and their AI-powered recognition algorithms. Challenges and prospective future research directions to develop practical, robust, and ubiquitous solutions are also discussed in detail.Comment: 30 pages, 12 figures, 9 table
    corecore