711,693 research outputs found
Quantum computing classical physics
In the past decade quantum algorithms have been found which outperform the
best classical solutions known for certain classical problems as well as the
best classical methods known for simulation of certain quantum systems. This
suggests that they may also speed up the simulation of some classical systems.
I describe one class of discrete quantum algorithms which do so--quantum
lattice gas automata--and show how to implement them efficiently on standard
quantum computers.Comment: 13 pages, plain TeX, 10 PostScript figures included with epsf.tex;
for related work see http://math.ucsd.edu/~dmeyer/research.htm
Classical computing, quantum computing, and Shor's factoring algorithm
This is an expository talk written for the Bourbaki Seminar. After a brief
introduction, Section 1 discusses in the categorical language the structure of
the classical deterministic computations. Basic notions of complexity icluding
the P/NP problem are reviewed. Section 2 introduces the notion of quantum
parallelism and explains the main issues of quantum computing. Section 3 is
devoted to four quantum subroutines: initialization, quantum computing of
classical Boolean functions, quantum Fourier transform, and Grover's search
algorithm. The central Section 4 explains Shor's factoring algorithm. Section 5
relates Kolmogorov's complexity to the spectral properties of computable
function. Appendix contributes to the prehistory of quantum computing.Comment: 27 pp., no figures, amste
Making Classical Ground State Spin Computing Fault-Tolerant
We examine a model of classical deterministic computing in which the ground
state of the classical system is a spatial history of the computation. This
model is relevant to quantum dot cellular automata as well as to recent
universal adiabatic quantum computing constructions. In its most primitive
form, systems constructed in this model cannot compute in an error free manner
when working at non-zero temperature. However, by exploiting a mapping between
the partition function for this model and probabilistic classical circuits we
are able to show that it is possible to make this model effectively error free.
We achieve this by using techniques in fault-tolerant classical computing and
the result is that the system can compute effectively error free if the
temperature is below a critical temperature. We further link this model to
computational complexity and show that a certain problem concerning finite
temperature classical spin systems is complete for the complexity class
Merlin-Arthur. This provides an interesting connection between the physical
behavior of certain many-body spin systems and computational complexity.Comment: 24 pages, 1 figur
Integrating Evolutionary Computation with Neural Networks
There is a tremendous interest in the development of the evolutionary computation techniques as they are well suited to deal with optimization of functions containing a large number of variables. This paper presents a brief review of evolutionary computing techniques. It also discusses briefly the hybridization of evolutionary computation and neural networks and presents a solution of a classical problem using neural computing and evolutionary computing technique
- …
