711,693 research outputs found

    Quantum computing classical physics

    Get PDF
    In the past decade quantum algorithms have been found which outperform the best classical solutions known for certain classical problems as well as the best classical methods known for simulation of certain quantum systems. This suggests that they may also speed up the simulation of some classical systems. I describe one class of discrete quantum algorithms which do so--quantum lattice gas automata--and show how to implement them efficiently on standard quantum computers.Comment: 13 pages, plain TeX, 10 PostScript figures included with epsf.tex; for related work see http://math.ucsd.edu/~dmeyer/research.htm

    Classical computing, quantum computing, and Shor's factoring algorithm

    Get PDF
    This is an expository talk written for the Bourbaki Seminar. After a brief introduction, Section 1 discusses in the categorical language the structure of the classical deterministic computations. Basic notions of complexity icluding the P/NP problem are reviewed. Section 2 introduces the notion of quantum parallelism and explains the main issues of quantum computing. Section 3 is devoted to four quantum subroutines: initialization, quantum computing of classical Boolean functions, quantum Fourier transform, and Grover's search algorithm. The central Section 4 explains Shor's factoring algorithm. Section 5 relates Kolmogorov's complexity to the spectral properties of computable function. Appendix contributes to the prehistory of quantum computing.Comment: 27 pp., no figures, amste

    Making Classical Ground State Spin Computing Fault-Tolerant

    Full text link
    We examine a model of classical deterministic computing in which the ground state of the classical system is a spatial history of the computation. This model is relevant to quantum dot cellular automata as well as to recent universal adiabatic quantum computing constructions. In its most primitive form, systems constructed in this model cannot compute in an error free manner when working at non-zero temperature. However, by exploiting a mapping between the partition function for this model and probabilistic classical circuits we are able to show that it is possible to make this model effectively error free. We achieve this by using techniques in fault-tolerant classical computing and the result is that the system can compute effectively error free if the temperature is below a critical temperature. We further link this model to computational complexity and show that a certain problem concerning finite temperature classical spin systems is complete for the complexity class Merlin-Arthur. This provides an interesting connection between the physical behavior of certain many-body spin systems and computational complexity.Comment: 24 pages, 1 figur

    Integrating Evolutionary Computation with Neural Networks

    Get PDF
    There is a tremendous interest in the development of the evolutionary computation techniques as they are well suited to deal with optimization of functions containing a large number of variables. This paper presents a brief review of evolutionary computing techniques. It also discusses briefly the hybridization of evolutionary computation and neural networks and presents a solution of a classical problem using neural computing and evolutionary computing technique
    corecore