6 research outputs found

    A Coding Theoretic Study on MLL proof nets

    Full text link
    Coding theory is very useful for real world applications. A notable example is digital television. Basically, coding theory is to study a way of detecting and/or correcting data that may be true or false. Moreover coding theory is an area of mathematics, in which there is an interplay between many branches of mathematics, e.g., abstract algebra, combinatorics, discrete geometry, information theory, etc. In this paper we propose a novel approach for analyzing proof nets of Multiplicative Linear Logic (MLL) by coding theory. We define families of proof structures and introduce a metric space for each family. In each family, 1. an MLL proof net is a true code element; 2. a proof structure that is not an MLL proof net is a false (or corrupted) code element. The definition of our metrics reflects the duality of the multiplicative connectives elegantly. In this paper we show that in the framework one error-detecting is possible but one error-correcting not. Our proof of the impossibility of one error-correcting is interesting in the sense that a proof theoretical property is proved using a graph theoretical argument. In addition, we show that affine logic and MLL + MIX are not appropriate for this framework. That explains why MLL is better than such similar logics.Comment: minor modification

    LNL polycategories and doctrines of linear logic

    Get PDF
    We define and study LNL polycategories, which abstract the judgmental structure of classical linear logic with exponentials. Many existing structures can be represented as LNL polycategories, including LNL adjunctions, linear exponential comonads, LNL multicategories, IL-indexed categories, linearly distributive categories with storage, commutative and strong monads, CBPV-structures, models of polarized calculi, Freyd-categories, and skew multicategories, as well as ordinary cartesian, symmetric, and planar multicategories and monoidal categories, symmetric polycategories, and linearly distributive and *-autonomous categories. To study such classes of structures uniformly, we define a notion of LNL doctrine, such that each of these classes of structures can be identified with the algebras for some such doctrine. We show that free algebras for LNL doctrines can be presented by a sequent calculus, and that every morphism of doctrines induces an adjunction between their 2-categories of algebras

    Classical linear logic of implications

    No full text
    Abstract. We give a simple term calculus for the multiplicative exponential fragment of Classical Linear Logic, by extending Barber and Plotkin’s system for the intuitionistic case. The calculus has the nonlinear andlinear implications as the basic constructs, andthis design choice allows a technically managable axiomatization without commuting conversions. Despite this simplicity, the calculus is shown to be sound andcomplete for category-theoretic models given by ∗-autonomous categories with linear exponential comonads.

    Under consideration for publication in Math. Struct. in Comp. Science Classical Linear Logic of Implications

    No full text
    We give a simple term calculus for the multiplicative exponential fragment of Classical Linear Logic, by extending Barber and Plotkin’s dual-context system for the intuitionistic case. The calculus has the non-linear and linear implications as the basic constructs, and this design choice allows a technically manageable axiomatization without commuting conversions. Despite this simplicity, the calculus is shown to be sound and complete for category-theoretic models given by ∗-autonomous categories with linear exponential comonads. 1
    corecore