48 research outputs found

    Class-Incremental Learning Using Generative Experience Replay Based on Time-aware Regularization

    Full text link
    Learning new tasks accumulatively without forgetting remains a critical challenge in continual learning. Generative experience replay addresses this challenge by synthesizing pseudo-data points for past learned tasks and later replaying them for concurrent training along with the new tasks' data. Generative replay is the best strategy for continual learning under a strict class-incremental setting when certain constraints need to be met: (i) constant model size, (ii) no pre-training dataset, and (iii) no memory buffer for storing past tasks' data. Inspired by the biological nervous system mechanisms, we introduce a time-aware regularization method to dynamically fine-tune the three training objective terms used for generative replay: supervised learning, latent regularization, and data reconstruction. Experimental results on major benchmarks indicate that our method pushes the limit of brain-inspired continual learners under such strict settings, improves memory retention, and increases the average performance over continually arriving tasks

    SHAPNN: Shapley Value Regularized Tabular Neural Network

    Full text link
    We present SHAPNN, a novel deep tabular data modeling architecture designed for supervised learning. Our approach leverages Shapley values, a well-established technique for explaining black-box models. Our neural network is trained using standard backward propagation optimization methods, and is regularized with realtime estimated Shapley values. Our method offers several advantages, including the ability to provide valid explanations with no computational overhead for data instances and datasets. Additionally, prediction with explanation serves as a regularizer, which improves the model's performance. Moreover, the regularized prediction enhances the model's capability for continual learning. We evaluate our method on various publicly available datasets and compare it with state-of-the-art deep neural network models, demonstrating the superior performance of SHAPNN in terms of AUROC, transparency, as well as robustness to streaming data.Comment: 9 pages, 8 figure

    Improving the Efficiency of Human-in-the-Loop Systems: Adding Artificial to Human Experts

    Full text link
    Information systems increasingly leverage artificial intelligence (AI) and machine learning (ML) to generate value from vast amounts of data. However, ML models are imperfect and can generate incorrect classifications. Hence, human-in-the-loop (HITL) extensions to ML models add a human review for instances that are difficult to classify. This study argues that continuously relying on human experts to handle difficult model classifications leads to a strong increase in human effort, which strains limited resources. To address this issue, we propose a hybrid system that creates artificial experts that learn to classify data instances from unknown classes previously reviewed by human experts. Our hybrid system assesses which artificial expert is suitable for classifying an instance from an unknown class and automatically assigns it. Over time, this reduces human effort and increases the efficiency of the system. Our experiments demonstrate that our approach outperforms traditional HITL systems for several benchmarks on image classification.Comment: Accepted at International Conference on Wirtschaftsinformatik, 202

    ACIL: Analytic Class-Incremental Learning with Absolute Memorization and Privacy Protection

    Full text link
    Class-incremental learning (CIL) learns a classification model with training data of different classes arising progressively. Existing CIL either suffers from serious accuracy loss due to catastrophic forgetting, or invades data privacy by revisiting used exemplars. Inspired by linear learning formulations, we propose an analytic class-incremental learning (ACIL) with absolute memorization of past knowledge while avoiding breaching of data privacy (i.e., without storing historical data). The absolute memorization is demonstrated in the sense that class-incremental learning using ACIL given present data would give identical results to that from its joint-learning counterpart which consumes both present and historical samples. This equality is theoretically validated. Data privacy is ensured since no historical data are involved during the learning process. Empirical validations demonstrate ACIL's competitive accuracy performance with near-identical results for various incremental task settings (e.g., 5-50 phases). This also allows ACIL to outperform the state-of-the-art methods for large-phase scenarios (e.g., 25 and 50 phases).Comment: published in NeurIPS 202
    corecore