17,757 research outputs found

    Triple Generative Adversarial Networks

    Full text link
    We propose a unified game-theoretical framework to perform classification and conditional image generation given limited supervision. It is formulated as a three-player minimax game consisting of a generator, a classifier and a discriminator, and therefore is referred to as Triple Generative Adversarial Network (Triple-GAN). The generator and the classifier characterize the conditional distributions between images and labels to perform conditional generation and classification, respectively. The discriminator solely focuses on identifying fake image-label pairs. Under a nonparametric assumption, we prove the unique equilibrium of the game is that the distributions characterized by the generator and the classifier converge to the data distribution. As a byproduct of the three-player mechanism, Triple-GAN is flexible to incorporate different semi-supervised classifiers and GAN architectures. We evaluate Triple-GAN in two challenging settings, namely, semi-supervised learning and the extreme low data regime. In both settings, Triple-GAN can achieve excellent classification results and generate meaningful samples in a specific class simultaneously. In particular, using a commonly adopted 13-layer CNN classifier, Triple-GAN outperforms extensive semi-supervised learning methods substantially on more than 10 benchmarks no matter data augmentation is applied or not

    Improving brain computer interface performance by data augmentation with conditional Deep Convolutional Generative Adversarial Networks

    Full text link
    One of the big restrictions in brain computer interface field is the very limited training samples, it is difficult to build a reliable and usable system with such limited data. Inspired by generative adversarial networks, we propose a conditional Deep Convolutional Generative Adversarial (cDCGAN) Networks method to generate more artificial EEG signal automatically for data augmentation to improve the performance of convolutional neural networks in brain computer interface field and overcome the small training dataset problems. We evaluate the proposed cDCGAN method on BCI competition dataset of motor imagery. The results show that the generated artificial EEG data from Gaussian noise can learn the features from raw EEG data and has no less than the classification accuracy of raw EEG data in the testing dataset. Also by using generated artificial data can effectively improve classification accuracy at the same model with limited training data.Comment: 4 pages, 5 figure

    Conditional Infilling GANs for Data Augmentation in Mammogram Classification

    Full text link
    Deep learning approaches to breast cancer detection in mammograms have recently shown promising results. However, such models are constrained by the limited size of publicly available mammography datasets, in large part due to privacy concerns and the high cost of generating expert annotations. Limited dataset size is further exacerbated by substantial class imbalance since "normal" images dramatically outnumber those with findings. Given the rapid progress of generative models in synthesizing realistic images, and the known effectiveness of simple data augmentation techniques (e.g. horizontal flipping), we ask if it is possible to synthetically augment mammogram datasets using generative adversarial networks (GANs). We train a class-conditional GAN to perform contextual in-filling, which we then use to synthesize lesions onto healthy screening mammograms. First, we show that GANs are capable of generating high-resolution synthetic mammogram patches. Next, we experimentally evaluate using the augmented dataset to improve breast cancer classification performance. We observe that a ResNet-50 classifier trained with GAN-augmented training data produces a higher AUROC compared to the same model trained only on traditionally augmented data, demonstrating the potential of our approach.Comment: To appear in MICCAI 2018, Breast Image Analysis Worksho

    GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification

    Full text link
    Deep learning methods, and in particular convolutional neural networks (CNNs), have led to an enormous breakthrough in a wide range of computer vision tasks, primarily by using large-scale annotated datasets. However, obtaining such datasets in the medical domain remains a challenge. In this paper, we present methods for generating synthetic medical images using recently presented deep learning Generative Adversarial Networks (GANs). Furthermore, we show that generated medical images can be used for synthetic data augmentation, and improve the performance of CNN for medical image classification. Our novel method is demonstrated on a limited dataset of computed tomography (CT) images of 182 liver lesions (53 cysts, 64 metastases and 65 hemangiomas). We first exploit GAN architectures for synthesizing high quality liver lesion ROIs. Then we present a novel scheme for liver lesion classification using CNN. Finally, we train the CNN using classic data augmentation and our synthetic data augmentation and compare performance. In addition, we explore the quality of our synthesized examples using visualization and expert assessment. The classification performance using only classic data augmentation yielded 78.6% sensitivity and 88.4% specificity. By adding the synthetic data augmentation the results increased to 85.7% sensitivity and 92.4% specificity. We believe that this approach to synthetic data augmentation can generalize to other medical classification applications and thus support radiologists' efforts to improve diagnosis.Comment: Preprint submitted to Neurocomputin

    DADA: Deep Adversarial Data Augmentation for Extremely Low Data Regime Classification

    Full text link
    Deep learning has revolutionized the performance of classification, but meanwhile demands sufficient labeled data for training. Given insufficient data, while many techniques have been developed to help combat overfitting, the challenge remains if one tries to train deep networks, especially in the ill-posed extremely low data regimes: only a small set of labeled data are available, and nothing -- including unlabeled data -- else. Such regimes arise from practical situations where not only data labeling but also data collection itself is expensive. We propose a deep adversarial data augmentation (DADA) technique to address the problem, in which we elaborately formulate data augmentation as a problem of training a class-conditional and supervised generative adversarial network (GAN). Specifically, a new discriminator loss is proposed to fit the goal of data augmentation, through which both real and augmented samples are enforced to contribute to and be consistent in finding the decision boundaries. Tailored training techniques are developed accordingly. To quantitatively validate its effectiveness, we first perform extensive simulations to show that DADA substantially outperforms both traditional data augmentation and a few GAN-based options. We then extend experiments to three real-world small labeled datasets where existing data augmentation and/or transfer learning strategies are either less effective or infeasible. All results endorse the superior capability of DADA in enhancing the generalization ability of deep networks trained in practical extremely low data regimes. Source code is available at https://github.com/SchafferZhang/DADA.Comment: 15 pages, 5 figure

    Generative Synthetic Augmentation using Label-to-Image Translation for Nuclei Image Segmentation

    Full text link
    In medical image diagnosis, pathology image analysis using semantic segmentation becomes important for efficient screening as a field of digital pathology. The spatial augmentation is ordinary used for semantic segmentation. Tumor images under malignant are rare and to annotate the labels of nuclei region takes much time-consuming. We require an effective use of dataset to maximize the segmentation accuracy. It is expected that some augmentation to transform generalized images influence the segmentation performance. We propose a synthetic augmentation using label-to-image translation, mapping from a semantic label with the edge structure to a real image. Exactly this paper deal with stain slides of nuclei in tumor. Actually, we demonstrate several segmentation algorithms applied to the initial dataset that contains real images and labels using synthetic augmentation in order to add their generalized images. We computes and reports that a proposed synthetic augmentation procedure improve their accuracy.Comment: 15pages, 12 figure

    Exploring Bias in GAN-based Data Augmentation for Small Samples

    Full text link
    For machine learning task, lacking sufficient samples mean the trained model has low confidence to approach the ground truth function. Until recently, after the generative adversarial networks (GAN) had been proposed, we see the hope of small samples data augmentation (DA) with realistic fake data, and many works validated the viability of GAN-based DA. Although most of the works pointed out higher accuracy can be achieved using GAN-based DA, some researchers stressed that the fake data generated from GAN has inherent bias, and in this paper, we explored when the bias is so low that it cannot hurt the performance, we set experiments to depict the bias in different GAN-based DA setting, and from the results, we design a pipeline to inspect specific dataset is efficiently-augmentable with GAN-based DA or not. And finally, depending on our trial to reduce the bias, we proposed some advice to mitigate bias in GAN-based DA application.Comment: rejected by SIGKDD 201

    Data Augmentation Generative Adversarial Networks

    Full text link
    Effective training of neural networks requires much data. In the low-data regime, parameters are underdetermined, and learnt networks generalise poorly. Data Augmentation alleviates this by using existing data more effectively. However standard data augmentation produces only limited plausible alternative data. Given there is potential to generate a much broader set of augmentations, we design and train a generative model to do data augmentation. The model, based on image conditional Generative Adversarial Networks, takes data from a source domain and learns to take any data item and generalise it to generate other within-class data items. As this generative process does not depend on the classes themselves, it can be applied to novel unseen classes of data. We show that a Data Augmentation Generative Adversarial Network (DAGAN) augments standard vanilla classifiers well. We also show a DAGAN can enhance few-shot learning systems such as Matching Networks. We demonstrate these approaches on Omniglot, on EMNIST having learnt the DAGAN on Omniglot, and VGG-Face data. In our experiments we can see over 13% increase in accuracy in the low-data regime experiments in Omniglot (from 69% to 82%), EMNIST (73.9% to 76%) and VGG-Face (4.5% to 12%); in Matching Networks for Omniglot we observe an increase of 0.5% (from 96.9% to 97.4%) and an increase of 1.8% in EMNIST (from 59.5% to 61.3%).Comment: 10 page

    Data Augmentation for Deep Candlestick Learner

    Full text link
    To successfully build a deep learning model, it will need a large amount of labeled data. However, labeled data are hard to collect in many use cases. To tackle this problem, a bunch of data augmentation methods have been introduced recently and have demonstrated successful results in computer vision, natural language and so on. For financial trading data, to our best knowledge, successful data augmentation framework has rarely been studied. Here we propose a Modified Local Search Attack Sampling method to augment the candlestick data, which is a very important tool for professional trader. Our results show that the proposed method can generate high-quality data which are hard to distinguish by human and will open a new way for finance community to employ existing machine learning techniques even if the dataset is small.Comment: 12 pages, 9 figures, 2 tables, 1 algorith

    CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

    Full text link
    We present variational generative adversarial networks, a general learning framework that combines a variational auto-encoder with a generative adversarial network, for synthesizing images in fine-grained categories, such as faces of a specific person or objects in a category. Our approach models an image as a composition of label and latent attributes in a probabilistic model. By varying the fine-grained category label fed into the resulting generative model, we can generate images in a specific category with randomly drawn values on a latent attribute vector. Our approach has two novel aspects. First, we adopt a cross entropy loss for the discriminative and classifier network, but a mean discrepancy objective for the generative network. This kind of asymmetric loss function makes the GAN training more stable. Second, we adopt an encoder network to learn the relationship between the latent space and the real image space, and use pairwise feature matching to keep the structure of generated images. We experiment with natural images of faces, flowers, and birds, and demonstrate that the proposed models are capable of generating realistic and diverse samples with fine-grained category labels. We further show that our models can be applied to other tasks, such as image inpainting, super-resolution, and data augmentation for training better face recognition models.Comment: to appear in ICCV 201
    • …
    corecore