21 research outputs found

    Binary Classification from Positive-Confidence Data

    Full text link
    Can we learn a binary classifier from only positive data, without any negative data or unlabeled data? We show that if one can equip positive data with confidence (positive-confidence), one can successfully learn a binary classifier, which we name positive-confidence (Pconf) classification. Our work is related to one-class classification which is aimed at "describing" the positive class by clustering-related methods, but one-class classification does not have the ability to tune hyper-parameters and their aim is not on "discriminating" positive and negative classes. For the Pconf classification problem, we provide a simple empirical risk minimization framework that is model-independent and optimization-independent. We theoretically establish the consistency and an estimation error bound, and demonstrate the usefulness of the proposed method for training deep neural networks through experiments.Comment: NeurIPS 2018 camera-ready version (this paper was selected for spotlight presentation

    Alternate Estimation of a Classifier and the Class-Prior from Positive and Unlabeled Data

    Full text link
    We consider a problem of learning a binary classifier only from positive data and unlabeled data (PU learning) and estimating the class-prior in unlabeled data under the case-control scenario. Most of the recent methods of PU learning require an estimate of the class-prior probability in unlabeled data, and it is estimated in advance with another method. However, such a two-step approach which first estimates the class prior and then trains a classifier may not be the optimal approach since the estimation error of the class-prior is not taken into account when a classifier is trained. In this paper, we propose a novel unified approach to estimating the class-prior and training a classifier alternately. Our proposed method is simple to implement and computationally efficient. Through experiments, we demonstrate the practical usefulness of the proposed method

    Beyond the Selected Completely At Random Assumption for Learning from Positive and Unlabeled Data

    Full text link
    Most positive and unlabeled data is subject to selection biases. The labeled examples can, for example, be selected from the positive set because they are easier to obtain or more obviously positive. This paper investigates how learning can be ena BHbled in this setting. We propose and theoretically analyze an empirical-risk-based method for incorporating the labeling mechanism. Additionally, we investigate under which assumptions learning is possible when the labeling mechanism is not fully understood and propose a practical method to enable this. Our empirical analysis supports the theoretical results and shows that taking into account the possibility of a selection bias, even when the labeling mechanism is unknown, improves the trained classifiers

    Convex Formulation of Multiple Instance Learning from Positive and Unlabeled Bags

    Full text link
    Multiple instance learning (MIL) is a variation of traditional supervised learning problems where data (referred to as bags) are composed of sub-elements (referred to as instances) and only bag labels are available. MIL has a variety of applications such as content-based image retrieval, text categorization and medical diagnosis. Most of the previous work for MIL assume that the training bags are fully labeled. However, it is often difficult to obtain an enough number of labeled bags in practical situations, while many unlabeled bags are available. A learning framework called PU learning (positive and unlabeled learning) can address this problem. In this paper, we propose a convex PU learning method to solve an MIL problem. We experimentally show that the proposed method achieves better performance with significantly lower computational costs than an existing method for PU-MIL

    A Robust AUC Maximization Framework with Simultaneous Outlier Detection and Feature Selection for Positive-Unlabeled Classification

    Full text link
    The positive-unlabeled (PU) classification is a common scenario in real-world applications such as healthcare, text classification, and bioinformatics, in which we only observe a few samples labeled as "positive" together with a large volume of "unlabeled" samples that may contain both positive and negative samples. Building robust classifier for the PU problem is very challenging, especially for complex data where the negative samples overwhelm and mislabeled samples or corrupted features exist. To address these three issues, we propose a robust learning framework that unifies AUC maximization (a robust metric for biased labels), outlier detection (for excluding wrong labels), and feature selection (for excluding corrupted features). The generalization error bounds are provided for the proposed model that give valuable insight into the theoretical performance of the method and lead to useful practical guidance, e.g., to train a model, we find that the included unlabeled samples are sufficient as long as the sample size is comparable to the number of positive samples in the training process. Empirical comparisons and two real-world applications on surgical site infection (SSI) and EEG seizure detection are also conducted to show the effectiveness of the proposed model

    Mixture Proportion Estimation via Kernel Embedding of Distributions

    Full text link
    Mixture proportion estimation (MPE) is the problem of estimating the weight of a component distribution in a mixture, given samples from the mixture and component. This problem constitutes a key part in many "weakly supervised learning" problems like learning with positive and unlabelled samples, learning with label noise, anomaly detection and crowdsourcing. While there have been several methods proposed to solve this problem, to the best of our knowledge no efficient algorithm with a proven convergence rate towards the true proportion exists for this problem. We fill this gap by constructing a provably correct algorithm for MPE, and derive convergence rates under certain assumptions on the distribution. Our method is based on embedding distributions onto an RKHS, and implementing it only requires solving a simple convex quadratic programming problem a few times. We run our algorithm on several standard classification datasets, and demonstrate that it performs comparably to or better than other algorithms on most datasets

    Estimating the class prior and posterior from noisy positives and unlabeled data

    Full text link
    We develop a classification algorithm for estimating posterior distributions from positive-unlabeled data, that is robust to noise in the positive labels and effective for high-dimensional data. In recent years, several algorithms have been proposed to learn from positive-unlabeled data; however, many of these contributions remain theoretical, performing poorly on real high-dimensional data that is typically contaminated with noise. We build on this previous work to develop two practical classification algorithms that explicitly model the noise in the positive labels and utilize univariate transforms built on discriminative classifiers. We prove that these univariate transforms preserve the class prior, enabling estimation in the univariate space and avoiding kernel density estimation for high-dimensional data. The theoretical development and both parametric and nonparametric algorithms proposed here constitutes an important step towards wide-spread use of robust classification algorithms for positive-unlabeled data.Comment: Fixed a typo in the MSGMM update equations in the appendix. Other minor change

    Learning from Positive and Unlabeled Data under the Selected At Random Assumption

    Full text link
    For many interesting tasks, such as medical diagnosis and web page classification, a learner only has access to some positively labeled examples and many unlabeled examples. Learning from this type of data requires making assumptions about the true distribution of the classes and/or the mechanism that was used to select the positive examples to be labeled. The commonly made assumptions, separability of the classes and positive examples being selected completely at random, are very strong. This paper proposes a weaker assumption that assumes the positive examples to be selected at random, conditioned on some of the attributes. To learn under this assumption, an EM method is proposed. Experiments show that our method is not only very capable of learning under this assumption, but it also outperforms the state of the art for learning under the selected completely at random assumption

    Nonparametric semi-supervised learning of class proportions

    Full text link
    The problem of developing binary classifiers from positive and unlabeled data is often encountered in machine learning. A common requirement in this setting is to approximate posterior probabilities of positive and negative classes for a previously unseen data point. This problem can be decomposed into two steps: (i) the development of accurate predictors that discriminate between positive and unlabeled data, and (ii) the accurate estimation of the prior probabilities of positive and negative examples. In this work we primarily focus on the latter subproblem. We study nonparametric class prior estimation and formulate this problem as an estimation of mixing proportions in two-component mixture models, given a sample from one of the components and another sample from the mixture itself. We show that estimation of mixing proportions is generally ill-defined and propose a canonical form to obtain identifiability while maintaining the flexibility to model any distribution. We use insights from this theory to elucidate the optimization surface of the class priors and propose an algorithm for estimating them. To address the problems of high-dimensional density estimation, we provide practical transformations to low-dimensional spaces that preserve class priors. Finally, we demonstrate the efficacy of our method on univariate and multivariate data

    Identifying Different Definitions of Future in the Assessment of Future Economic Conditions: Application of PU Learning and Text Mining

    Full text link
    The Economy Watcher Survey, which is a market survey published by the Japanese government, contains \emph{assessments of current and future economic conditions} by people from various fields. Although this survey provides insights regarding economic policy for policymakers, a clear definition of the word "future" in future economic conditions is not provided. Hence, the assessments respondents provide in the survey are simply based on their interpretations of the meaning of "future." This motivated us to reveal the different interpretations of the future in their judgments of future economic conditions by applying weakly supervised learning and text mining. In our research, we separate the assessments of future economic conditions into economic conditions of the near and distant future using learning from positive and unlabeled data (PU learning). Because the dataset includes data from several periods, we devised new architecture to enable neural networks to conduct PU learning based on the idea of multi-task learning to efficiently learn a classifier. Our empirical analysis confirmed that the proposed method could separate the future economic conditions, and we interpreted the classification results to obtain intuitions for policymaking
    corecore