4,784 research outputs found

    Automatic Metadata Generation using Associative Networks

    Full text link
    In spite of its tremendous value, metadata is generally sparse and incomplete, thereby hampering the effectiveness of digital information services. Many of the existing mechanisms for the automated creation of metadata rely primarily on content analysis which can be costly and inefficient. The automatic metadata generation system proposed in this article leverages resource relationships generated from existing metadata as a medium for propagation from metadata-rich to metadata-poor resources. Because of its independence from content analysis, it can be applied to a wide variety of resource media types and is shown to be computationally inexpensive. The proposed method operates through two distinct phases. Occurrence and co-occurrence algorithms first generate an associative network of repository resources leveraging existing repository metadata. Second, using the associative network as a substrate, metadata associated with metadata-rich resources is propagated to metadata-poor resources by means of a discrete-form spreading activation algorithm. This article discusses the general framework for building associative networks, an algorithm for disseminating metadata through such networks, and the results of an experiment and validation of the proposed method using a standard bibliographic dataset

    The Child is Father of the Man: Foresee the Success at the Early Stage

    Full text link
    Understanding the dynamic mechanisms that drive the high-impact scientific work (e.g., research papers, patents) is a long-debated research topic and has many important implications, ranging from personal career development and recruitment search, to the jurisdiction of research resources. Recent advances in characterizing and modeling scientific success have made it possible to forecast the long-term impact of scientific work, where data mining techniques, supervised learning in particular, play an essential role. Despite much progress, several key algorithmic challenges in relation to predicting long-term scientific impact have largely remained open. In this paper, we propose a joint predictive model to forecast the long-term scientific impact at the early stage, which simultaneously addresses a number of these open challenges, including the scholarly feature design, the non-linearity, the domain-heterogeneity and dynamics. In particular, we formulate it as a regularized optimization problem and propose effective and scalable algorithms to solve it. We perform extensive empirical evaluations on large, real scholarly data sets to validate the effectiveness and the efficiency of our method.Comment: Correct some typos in our KDD pape

    HitFraud: A Broad Learning Approach for Collective Fraud Detection in Heterogeneous Information Networks

    Full text link
    On electronic game platforms, different payment transactions have different levels of risk. Risk is generally higher for digital goods in e-commerce. However, it differs based on product and its popularity, the offer type (packaged game, virtual currency to a game or subscription service), storefront and geography. Existing fraud policies and models make decisions independently for each transaction based on transaction attributes, payment velocities, user characteristics, and other relevant information. However, suspicious transactions may still evade detection and hence we propose a broad learning approach leveraging a graph based perspective to uncover relationships among suspicious transactions, i.e., inter-transaction dependency. Our focus is to detect suspicious transactions by capturing common fraudulent behaviors that would not be considered suspicious when being considered in isolation. In this paper, we present HitFraud that leverages heterogeneous information networks for collective fraud detection by exploring correlated and fast evolving fraudulent behaviors. First, a heterogeneous information network is designed to link entities of interest in the transaction database via different semantics. Then, graph based features are efficiently discovered from the network exploiting the concept of meta-paths, and decisions on frauds are made collectively on test instances. Experiments on real-world payment transaction data from Electronic Arts demonstrate that the prediction performance is effectively boosted by HitFraud with fast convergence where the computation of meta-path based features is largely optimized. Notably, recall can be improved up to 7.93% and F-score 4.62% compared to baselines.Comment: ICDM 201
    • …
    corecore