23,524 research outputs found

    Doppler radar with multiphase modulation of transmitted and reflected signal

    Get PDF
    A microwave radar signal is generated and split by a circulator. A phase shifter introduces a series of phase shifts into a first part of the split signal which is then transmitted by antenna. A like number of phase shifts is introduced by the phase shifter into the return signal from the target. The circulator delivers the phase shifted return signal and the leakage signal from the circulator to a mixer which generates an IF signal output at the Doppler frequency. The IF signal is amplified, filtered, counted per unit of time, and the result displayed to provide indications of target sense and range rate. An oscillator controls rate of phase shift in the transmitted and received radar signals and provides a time base for the counter. The phase shift magnitude increases may be continuous and linear or discrete functions of time

    An FBAR Circulator

    Full text link
    This letter presents the experimental demonstration of a film bulk acoustic resonator (FBAR) circulator at 2.5 GHz. The circulator is based on spatio-temporal modulation of the series resonant frequency of FBARs using varactors and exhibits a large isolation of 76 dB at 2.5 GHz. The FBAR chip (0.25 mm2) consists of three identical FBARs connected in wye configuration. The FBAR0s quality factor (Q) of 1250 and piezoelectric coupling coefficient kt 2 of 3% relaxes the modulation requirements, achieving non-reciprocity with small modulationto- RF frequency ratio bettter than 1:800 (3 MHz:2.5 GHz)

    High performance millimeter-wave microstrip circulators and isolators

    Get PDF
    Millimeter wave systems, phased array antennas, and high performance components all require wideband circulators (and isolators) to perform diplexing and switching, to improve isolation and Voltage Standing Wave Ratio (VSWR), and to construct IMPATT diode reflection amplifiers. Presently, most of the millimeter-wave circulators and isolators are available in the configurations of waveguide or stripline, both of which suffer from the shortcomings of bulky size/weight, narrow bandwidth, and poor compatibility with monolithic millimeter-wave integrated circuits (MMIC). MMW microstrip circulators/isolators can eliminate or improve these shortcomings. Stub-tuned microstrip circulator configuration were developed utilizing the electromagnetic fields perturbation technique, the adhesion problems of microstrip metallization on new ferrite substrate were overcome, the fabrication, assembly, packaging techniques were improved, and then successfully designed, fabricated a Ka band circulator which has isolation and return loss of greater than 16dB, insertion loss less than 0.7dB. To assess the steady and reliable performance of the circulator, a temperature cycling test was done over the range of -20 to +50 C for 3 continuous cycles and found no significant impact or variation of circulator performance

    Circulator having quarter wavelength resonant post and parametric amplifier circuits utilizing the same Patent

    Get PDF
    Development of electromagnetic wave transmission line circulator and application to parametric amplifier circuit

    High-power microstrip switch

    Get PDF
    Switch, which uses only two p-i-n diodes on microstrip substrate, has been developed for application in spacecraft radio systems. Switch features improved power drain, weight, volume, magnetic cleanliness, and reliability, over currently-used circulator and electromechanical switches

    Dual-carrier Floquet circulator with time-modulated optical resonators

    Full text link
    Spatio-temporal modulation has shown great promise as a strong time-reversal symmetry breaking mechanism that enables integrated nonreciprocal devices and topological materials at optical frequencies. However, optical modulation has its own constraints in terms of modulation index and frequency, which limit the bandwidth and miniaturization of circulators and isolators, not unlike the magneto-optical schemes that it promises to replace. Here we propose and numerically demonstrate a Floquet circulator that leverages the untapped degrees of freedom unique to time-modulated resonators. Excited by sideband-selective waveguides, the system supports broadband nonreciprocal transmission without relying on the mirror or rotational symmetries required in conventional circulators. Cascading two resonators, we create a linear three-port circulator that exhibits complete and frequency-independent forward transmission between two of the ports. This approach enables wavelength-scale circulators that can rely on a variety of modulation mechanisms
    corecore