31 research outputs found

    Circular choosability

    Get PDF
    International audienceWe study circular choosability, a notion recently introduced by Mohar and by Zhu. First, we provide a negative answer to a question of Zhu about circular cliques. We next prove that cch(G) = O(ch(G) + ln |V(G)|) for every graph G. We investigate a generalisation of circular choosability, the circular f-choosability, where f is a function of the degrees. We also consider the circular choice number of planar graphs. Mohar asked for the value of τ := sup {cch(G) : G is planar}, and we prove that 68, thereby providing a negative answer to another question of Mohar. We also study the circular choice number of planar and outerplanar graphs with prescribed girth, and graphs with bounded density

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count

    Full text link
    We show that triangle-free penny graphs have degeneracy at most two, list coloring number (choosability) at most three, diameter D=Ω(n)D=\Omega(\sqrt n), and at most min(2nΩ(n),2nD2)\min\bigl(2n-\Omega(\sqrt n),2n-D-2\bigr) edges.Comment: 10 pages, 2 figures. To appear at the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Computing Graph Roots Without Short Cycles

    Get PDF
    Graph G is the square of graph H if two vertices x, y have an edge in G if and only if x, y are of distance at most two in H. Given H it is easy to compute its square H2, however Motwani and Sudan proved that it is NP-complete to determine if a given graph G is the square of some graph H (of girth 3). In this paper we consider the characterization and recognition problems of graphs that are squares of graphs of small girth, i.e. to determine if G = H2 for some graph H of small girth. The main results are the following. - There is a graph theoretical characterization for graphs that are squares of some graph of girth at least 7. A corollary is that if a graph G has a square root H of girth at least 7 then H is unique up to isomorphism. - There is a polynomial time algorithm to recognize if G = H2 for some graph H of girth at least 6. - It is NP-complete to recognize if G = H2 for some graph H of girth 4. These results almost provide a dichotomy theorem for the complexity of the recognition problem in terms of girth of the square roots. The algorithmic and graph theoretical results generalize previous results on tree square roots, and provide polynomial time algorithms to compute a graph square root of small girth if it exists. Some open questions and conjectures will also be discussed

    Coloring and covering problems on graphs

    Get PDF
    The \emph{separation dimension} of a graph GG, written π(G)\pi(G), is the minimum number of linear orderings of V(G)V(G) such that every two nonincident edges are ``separated'' in some ordering, meaning that both endpoints of one edge appear before both endpoints of the other. We introduce the \emph{fractional separation dimension} πf(G)\pi_f(G), which is the minimum of a/ba/b such that some aa linear orderings (repetition allowed) separate every two nonincident edges at least bb times. In contrast to separation dimension, we show fractional separation dimension is bounded: always πf(G)3\pi_f(G)\le 3, with equality if and only if GG contains K4K_4. There is no stronger bound even for bipartite graphs, since πf(Km,m)=πf(Km+1,m)=3mm+1\pi_f(K_{m,m})=\pi_f(K_{m+1,m})=\frac{3m}{m+1}. We also compute πf(G)\pi_f(G) for cycles and some complete tripartite graphs. We show that πf(G)<2\pi_f(G)<\sqrt{2} when GG is a tree and present a sequence of trees on which the value tends to 4/34/3. We conjecture that when n=3mn=3m the K4K_4-free nn-vertex graph maximizing πf(G)\pi_f(G) is Km,m,mK_{m,m,m}. We also consider analogous problems for circular orderings, where pairs of nonincident edges are separated unless their endpoints alternate. Let π(G)\pi^\circ(G) be the number of circular orderings needed to separate all pairs, and let πf(G)\pi_f^\circ(G) be the fractional version. Among our results: (1) π(G)=1\pi^\circ(G)=1 if and only GG is outerplanar. (2) π(G)2\pi^\circ(G)\le2 when GG is bipartite. (3) π(Kn)log2log3(n1)\pi^\circ(K_n)\ge\log_2\log_3(n-1). (4) πf(G)32\pi_f^\circ(G)\le\frac{3}{2}, with equality if and only if K4GK_4\subseteq G. (5) πf(Km,m)=3m32m1\pi_f^\circ(K_{m,m})=\frac{3m-3}{2m-1}. A \emph{star kk-coloring} is a proper kk-coloring where the union of any two color classes induces a star forest. While every planar graph is 4-colorable, not every planar graph is star 4-colorable. One method to produce a star 4-coloring is to partition the vertex set into a 2-independent set and a forest; such a partition is called an \emph{\Ifp}. We use discharging to prove that every graph with maximum average degree less than 52\frac{5}{2} has an \Ifp, which is sharp and improves the result of Bu, Cranston, Montassier, Raspaud, and Wang (2009). As a corollary, we gain that every planar graph with girth at least 10 has a star 4-coloring. A proper vertex coloring of a graph GG is \emph{rr-dynamic} if for each vV(G)v\in V(G), at least min{r,d(v)}\min\{r,d(v)\} colors appear in NG(v)N_G(v). We investigate 33-dynamic versions of coloring and list coloring. We prove that planar and toroidal graphs are 3-dynamically 10-choosable, and this bound is sharp for toroidal graphs. Given a proper total kk-coloring cc of a graph GG, we define the \emph{sum value} of a vertex vv to be c(v)+uvE(G)c(uv)c(v) + \sum_{uv \in E(G)} c(uv). The smallest integer kk such that GG has a proper total kk-coloring whose sum values form a proper coloring is the \emph{neighbor sum distinguishing total chromatic number} χΣ(G)\chi''_{\Sigma}(G). Pil{\'s}niak and Wo{\'z}niak~(2013) conjectured that χΣ(G)Δ(G)+3\chi''_{\Sigma}(G)\leq \Delta(G)+3 for any simple graph with maximum degree Δ(G)\Delta(G). We prove this bound to be asymptotically correct by showing that χΣ(G)Δ(G)(1+o(1))\chi''_{\Sigma}(G)\leq \Delta(G)(1+o(1)). The main idea of our argument relies on Przyby{\l}o's proof (2014) for neighbor sum distinguishing edge-coloring

    Master index to volumes 251-260

    Get PDF
    corecore