6,469 research outputs found

    VPSPACE and a transfer theorem over the complex field

    Get PDF
    We extend the transfer theorem of [KP2007] to the complex field. That is, we investigate the links between the class VPSPACE of families of polynomials and the Blum-Shub-Smale model of computation over C. Roughly speaking, a family of polynomials is in VPSPACE if its coefficients can be computed in polynomial space. Our main result is that if (uniform, constant-free) VPSPACE families can be evaluated efficiently then the class PAR of decision problems that can be solved in parallel polynomial time over the complex field collapses to P. As a result, one must first be able to show that there are VPSPACE families which are hard to evaluate in order to separate P from NP over C, or even from PAR.Comment: 14 page

    P versus NP and geometry

    Get PDF
    I describe three geometric approaches to resolving variants of P v. NP, present several results that illustrate the role of group actions in complexity theory, and make a first step towards completely geometric definitions of complexity classes.Comment: 20 pages, to appear in special issue of J. Symbolic. Comp. dedicated to MEGA 200

    Homomorphism Polynomials Complete for VP

    Get PDF
    The VP versus VNP question, introduced by Valiant, is probably the most important open question in algebraic complexity theory. Thanks to completeness results, a variant of this question, VBP versus VNP, can be succinctly restated as asking whether the permanent of a generic matrix can be written as a determinant of a matrix of polynomially bounded size. Strikingly, this restatement does not mention any notion of computational model. To get a similar restatement for the original and more fundamental question, and also to better understand the class itself, we need a complete polynomial for VP. Ad hoc constructions yielding complete polynomials were known, but not natural examples in the vein of the determinant. We give here several variants of natural complete polynomials for VP, based on the notion of graph homomorphism polynomials
    • …
    corecore