2 research outputs found

    Semiconductor Device Modeling, Simulation, and Failure Prediction for Electrostatic Discharge Conditions

    Get PDF
    Electrostatic Discharge (ESD) caused failures are major reliability issues in IC industry. Device modeling for ESD conditions is necessary to evaluate ESD robustness in simulation. Although SPICE model is accurate and efficient for circuit simulations in most cases, devices under ESD conditions operate in abnormal status. SPICE model cannot cover the device operating region beyond normal operation. Thermal failure is one of the main reasons to cause device failure under ESD conditions. A compact model is developed to predict thermal failure with circuit simulators. Instead of considering the detailed failure mechanisms, a failure temperature is introduced to indicate device failure. The developed model is implemented by a multiple-stage thermal network. P-N junction is the fundamental structure for ESD protection devices. An enhanced diode model is proposed and is used to simulate the device behaviors for ESD events. The model includes all physical effects for ESD conditions, which are voltage overshoot, self-heating effect, velocity saturation and thermal failure. The proposed model not only can fit the I-V and transient characteristics, but also can predict failure for different pulses. Safe Operating Area (SOA) is an important factor to evaluate the LDMOS performance. The transient SOA boundary is considered as power-defined. By placing the failure monitor under certain conditions, the developed modeling methodology can predict the boundary of transient SOA for any short pulse stress conditions. No matter failure happens before or after snapback phenomenon. Weibull distribution is popular to evaluate the dielectric lifetime for CVS. By using the transformative version of power law, the pulsing stresses are converted into CVS, and TDDB under ESD conditions for SiN MIMCAPs is analyzed. The thickness dependency and area independency of capacitor breakdown voltage is observed, which can be explained by the constant ?E model instead of conventional percolation model

    Entwicklungsumgebung für den rechnerunterstützten Entwurf von Mikrokomponenten

    Get PDF
    Im Rahmen dieser Arbeit wurde eine Konstruktionsumgebung für den rechnerunterstützten Entwurf mikromechanischer Komponenten auf der Grundlage des naßchemischen, anisotropen Tiefenätzens von monokristallinem Silizium entwickelt. Die Inhalte spannen einen Bogen vom Stand der Konstruktionsmethodik mikrotechnischer Systeme über die Konzeption und Implementierung einer neuen Entwurfssystematik bis hin zu deren Einsatz im Entwurf einer komplexen mikromechanischen Funktionsstruktur. Das Konzept der Umgebung trägt der Tatsache Rechnung, daß bislang kaum standardisierte mikrotechnische Bauteile am Markt verfügbar sind und sich daher primär die Aufgabe einer Neukonstruktion und Charakterisierung seiner Funktionskomponenten stellt. Die Komplexität und Heterogenität mikrotechnischer Bauelemente verhinderte bislang die einheitliche und überschaubare Integration einer rechnerunterstützten Entwicklung mikrotechnischer Komponenten und Systeme. Dem Funktionskonzept des mikrotechnischen Bauteils steht zudem vielfach ein restriktiver Einfluß der Fertigungstechnologie auf den Gestaltungsraum gegenüber. Die derzeit praktizierte, analytische Entwurfsmethodik, ausgehend vom Layout einer zweidimensionalen Maske auf die dreidimensionale (3D) Mikrostruktur zu schließen, ist daher schwierig und fehlerträchtig. Im Fall des anisotropen Ätzens gilt dieses insbesondere für komplexe Strukturen, deren Form nicht direkt aus dem Si-Kristall abgeleitet werden kann. In der Entwurfspraxis führt dies häufig zu einer Einengung des theoretisch nutzbaren Gestaltungsraums. Vor diesem Hintergrund realisiert die Konstruktionsumgebung folgende Zielsetzungen: - anwendergerechte Abbildung und Steuerung des Entwurfsablaufs anisotrop geätzter Mikrostrukturen und Dekomposition der Entwurfsaufgabe im Rahmen eines einheitlichen Integrationskonzepts der vorhandenen Entwurfswerkzeuge sowie Unterstützung einer kooperativen Aufgabenbearbeitung der Entwurfsaufgabe auf der Basis eines Workflow-Managementsystems. Das workflowbasierte Organisationskonzept der Umgebung unterstützt die einheitliche Integration weiterer domänenspezifischer Konstruktionsabläufe. - Verbesserung der Gestaltungsmethodik mikromechanischer Funktionskomponenten und Erweiterung des technologischen Anwendungsspektrums der anisotropen Ätztechnik durch die teilweise Umkehrung des klassischen Entwurfs-Grundformalismus. Grundlage ist die Entwicklung eines neuenWerkzeugs zur automatisierten Synthese lithographischer Maskenlayouts aus der 3DKomponentenbeschreibung (Layoutsynthese) auf der Basis genetischer Algorithmen. Die Layoutsynthese nutzt hierzu einen in die Konstruktionsumgebung integrierten Ätzsimulator. Das Programmsystem ist langfristig auf die Angliederung weiterer, lithographieorientierter Prozeßsimulationen ausgelegt. - Implementierung eines durchgängigen Informationsflusses im Entwurfsprozeß, ausgehend von der funktionalen Konzeption bis hin zur strukturellen Verifikation des Bauteils. Die Realisierung erfolgt im wesentlichen durch die Entwicklung einer Transformation der Ätzsimulationsergebnisse in ein Geometriemodell der Finite-Elemente-Methode auf der Grundlage rekursiver Octree- Datenstrukturen. Der Ansatz schließt die Lücke in der von der Entwurfssystematik unterstützten Wechselbeziehung einer zugleich technologie- und strukturorientierten Gestaltentwicklung mikromechanischer Funktionselemente. Zur Demonstration der Effektivität der Konstruktionsumgebung wird anhand des Entwurfs eines aus Sicht der Prozeßtechnik komplexen mikromechanischen Funktionsstruktur der Nutzen der Entwurfsmethodik und seiner Implementierung im Rahmen der vorliegenden Konstruktionsumgebung nachgewiesen. Die simulatorischen und technologischen Ergebnisse des Beispiels verdeutlichen insbesondere die erweiterten Gestaltungsmöglichkeiten anisotrop geätzter Mikrostrukturen
    corecore