3,106 research outputs found

    Efficient Deep Feature Learning and Extraction via StochasticNets

    Full text link
    Deep neural networks are a powerful tool for feature learning and extraction given their ability to model high-level abstractions in highly complex data. One area worth exploring in feature learning and extraction using deep neural networks is efficient neural connectivity formation for faster feature learning and extraction. Motivated by findings of stochastic synaptic connectivity formation in the brain as well as the brain's uncanny ability to efficiently represent information, we propose the efficient learning and extraction of features via StochasticNets, where sparsely-connected deep neural networks can be formed via stochastic connectivity between neurons. To evaluate the feasibility of such a deep neural network architecture for feature learning and extraction, we train deep convolutional StochasticNets to learn abstract features using the CIFAR-10 dataset, and extract the learned features from images to perform classification on the SVHN and STL-10 datasets. Experimental results show that features learned using deep convolutional StochasticNets, with fewer neural connections than conventional deep convolutional neural networks, can allow for better or comparable classification accuracy than conventional deep neural networks: relative test error decrease of ~4.5% for classification on the STL-10 dataset and ~1% for classification on the SVHN dataset. Furthermore, it was shown that the deep features extracted using deep convolutional StochasticNets can provide comparable classification accuracy even when only 10% of the training data is used for feature learning. Finally, it was also shown that significant gains in feature extraction speed can be achieved in embedded applications using StochasticNets. As such, StochasticNets allow for faster feature learning and extraction performance while facilitate for better or comparable accuracy performances.Comment: 10 pages. arXiv admin note: substantial text overlap with arXiv:1508.0546

    FFT-Based Deep Learning Deployment in Embedded Systems

    Full text link
    Deep learning has delivered its powerfulness in many application domains, especially in image and speech recognition. As the backbone of deep learning, deep neural networks (DNNs) consist of multiple layers of various types with hundreds to thousands of neurons. Embedded platforms are now becoming essential for deep learning deployment due to their portability, versatility, and energy efficiency. The large model size of DNNs, while providing excellent accuracy, also burdens the embedded platforms with intensive computation and storage. Researchers have investigated on reducing DNN model size with negligible accuracy loss. This work proposes a Fast Fourier Transform (FFT)-based DNN training and inference model suitable for embedded platforms with reduced asymptotic complexity of both computation and storage, making our approach distinguished from existing approaches. We develop the training and inference algorithms based on FFT as the computing kernel and deploy the FFT-based inference model on embedded platforms achieving extraordinary processing speed.Comment: Design, Automation, and Test in Europe (DATE) For source code, please contact Mahdi Nazemi at <[email protected]

    Binarized Convolutional Neural Networks with Separable Filters for Efficient Hardware Acceleration

    Full text link
    State-of-the-art convolutional neural networks are enormously costly in both compute and memory, demanding massively parallel GPUs for execution. Such networks strain the computational capabilities and energy available to embedded and mobile processing platforms, restricting their use in many important applications. In this paper, we push the boundaries of hardware-effective CNN design by proposing BCNN with Separable Filters (BCNNw/SF), which applies Singular Value Decomposition (SVD) on BCNN kernels to further reduce computational and storage complexity. To enable its implementation, we provide a closed form of the gradient over SVD to calculate the exact gradient with respect to every binarized weight in backward propagation. We verify BCNNw/SF on the MNIST, CIFAR-10, and SVHN datasets, and implement an accelerator for CIFAR-10 on FPGA hardware. Our BCNNw/SF accelerator realizes memory savings of 17% and execution time reduction of 31.3% compared to BCNN with only minor accuracy sacrifices.Comment: 9 pages, 6 figures, accepted for Embedded Vision Workshop (CVPRW

    Learning Transferable Architectures for Scalable Image Recognition

    Full text link
    Developing neural network image classification models often requires significant architecture engineering. In this paper, we study a method to learn the model architectures directly on the dataset of interest. As this approach is expensive when the dataset is large, we propose to search for an architectural building block on a small dataset and then transfer the block to a larger dataset. The key contribution of this work is the design of a new search space (the "NASNet search space") which enables transferability. In our experiments, we search for the best convolutional layer (or "cell") on the CIFAR-10 dataset and then apply this cell to the ImageNet dataset by stacking together more copies of this cell, each with their own parameters to design a convolutional architecture, named "NASNet architecture". We also introduce a new regularization technique called ScheduledDropPath that significantly improves generalization in the NASNet models. On CIFAR-10 itself, NASNet achieves 2.4% error rate, which is state-of-the-art. On ImageNet, NASNet achieves, among the published works, state-of-the-art accuracy of 82.7% top-1 and 96.2% top-5 on ImageNet. Our model is 1.2% better in top-1 accuracy than the best human-invented architectures while having 9 billion fewer FLOPS - a reduction of 28% in computational demand from the previous state-of-the-art model. When evaluated at different levels of computational cost, accuracies of NASNets exceed those of the state-of-the-art human-designed models. For instance, a small version of NASNet also achieves 74% top-1 accuracy, which is 3.1% better than equivalently-sized, state-of-the-art models for mobile platforms. Finally, the learned features by NASNet used with the Faster-RCNN framework surpass state-of-the-art by 4.0% achieving 43.1% mAP on the COCO dataset
    • …
    corecore