4 research outputs found

    From the Closed Classical Algorithmic Universe to an Open World of Algorithmic Constellations

    Get PDF
    This is a draft of the article to be published in Springer book series SAPERE. The final publication will be available a

    The Mind as Neural Software? Understanding Functionalism, Computationalism, and Computational Functionalism

    Get PDF
    Defending or attacking either functionalism or computationalism requires clarity on what they amount to and what evidence counts for or against them. My goal here is not to evaluate their plausibility. My goal is to formulate them and their relationship clearly enough that we can determine which type of evidence is relevant to them. I aim to dispel some sources of confusion that surround functionalism and computationalism, recruit recent philosophical work on mechanisms and computation to shed light on them, and clarify how functionalism and computationalism may or may not legitimately come together.\u

    Computations and Computers in the Sciences of Mind and Brain

    Get PDF
    Computationalism says that brains are computing mechanisms, that is, mechanisms that perform computations. At present, there is no consensus on how to formulate computationalism precisely or adjudicate the dispute between computationalism and its foes, or between different versions of computationalism. An important reason for the current impasse is the lack of a satisfactory philosophical account of computing mechanisms. The main goal of this dissertation is to offer such an account. I also believe that the history of computationalism sheds light on the current debate. By tracing different versions of computationalism to their common historical origin, we can see how the current divisions originated and understand their motivation. Reconstructing debates over computationalism in the context of their own intellectual history can contribute to philosophical progress on the relation between brains and computing mechanisms and help determine how brains and computing mechanisms are alike, and how they differ. Accordingly, my dissertation is divided into a historical part, which traces the early history of computationalism up to 1946, and a philosophical part, which offers an account of computing mechanisms. The two main ideas developed in this dissertation are that (1) computational states are to be identified functionally not semantically, and (2) computing mechanisms are to be studied by functional analysis. The resulting account of computing mechanism, which I call the functional account of computing mechanisms, can be used to identify computing mechanisms and the functions they compute. I use the functional account of computing mechanisms to taxonomize computing mechanisms based on their different computing power, and I use this taxonomy of computing mechanisms to taxonomize different versions of computationalism based on the functional properties that they ascribe to brains. By doing so, I begin to tease out empirically testable statements about the functional organization of the brain that different versions of computationalism are committed to. I submit that when computationalism is reformulated in the more explicit and precise way I propose, the disputes about computationalism can be adjudicated on the grounds of empirical evidence from neuroscience

    Church's thesis and cognitive science.

    No full text
    corecore