275,987 research outputs found

    Nematode chromosomes

    Get PDF
    The nematode Caenorhabditis elegans has shed light on many aspects of eukaryotic biology, including genetics, development, cell biology, and genomics. A major factor in the success of C. elegans as a model organism has been the availability, since the late 1990s, of an essentially gap-free and well-annotated nuclear genome sequence, divided among 6 chromosomes. In this review, we discuss the structure, function, and biology of C. elegans chromosomes and then provide a general perspective on chromosome biology in other diverse nematode species. We highlight malleable chromosome features including centromeres, telomeres, and repetitive elements, as well as the remarkable process of programmed DNA elimination (historically described as chromatin diminution) that induces loss of portions of the genome in somatic cells of a handful of nematode species. An exciting future prospect is that nematode species may enable experimental approaches to study chromosome features and to test models of chromosome evolution. In the long term, fundamental insights regarding how speciation is integrated with chromosome biology may be revealed

    Neurodevelopmental Disorders Associated with Chromosome 15

    Get PDF
    Chromosome 15 is a focus of increasing interest to both psychiatry and neurology. Several neurodevelopmental disorders are genetically associated with this autosome, including Prader-Willi syndrome, Angelman syndrome, Dyslexia, Autism, Hyperlexia, Ring 15 Chromosome syndrome, and Trisomy 15 syndrome. This report provides a review of the molecular biology of chromosome 15 and these associated disorders

    Mammalian telomeres and their partnership with lamins

    Get PDF
    Chromosome ends are complex structures, which require a panel of factors for their elongation, replication, and protection. We describe here the mechanics of mammalian telomeres, dynamics and maintainance in relation to lamins. Multiple biochemical connections, including association of telomeres to the nuclear envelope and matrix, of telomeric proteins to lamins, and of lamin-associated proteins to chromosome ends, underline the interplay between lamins and telomeres. Paths toward senescence, such as defective telomere replication, altered heterochromatin organization, and impaired DNA repair, are common to lamins' and telomeres' dysfunction. The convergence of phenotypes can be interpreted through a model of dynamic, lamin-controlled functional platforms dedicated to the function of telomeres as fragile sites. The features of telomeropathies and laminopathies, and of animal models underline further overlapping aspects, including the alteration of stem cell compartments. We expect that future studies of basic biology and on aging will benefit from the analysis of this telomere-lamina interplay

    The structure, function and evolution of a complete human chromosome 8

    Get PDF
    The complete assembly of each human chromosome is essential for understanding human biology and evolutio

    Fruitful analysis of sex chromosomes reveals X-treme genetic diversity

    Get PDF
    abstract: A new study on sex chromosome evolution in papaya helps to illuminate sex chromosome biology, including deviations from expected trajectories.The electronic version of this article is the complete one and can be found online at: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1115-
    corecore