2,189 research outputs found

    Chromatic Learning for Sparse Datasets

    Full text link
    Learning over sparse, high-dimensional data frequently necessitates the use of specialized methods such as the hashing trick. In this work, we design a highly scalable alternative approach that leverages the low degree of feature co-occurrences present in many practical settings. This approach, which we call Chromatic Learning (CL), obtains a low-dimensional dense feature representation by performing graph coloring over the co-occurrence graph of features---an approach previously used as a runtime performance optimization for GBDT training. This color-based dense representation can be combined with additional dense categorical encoding approaches, e.g., submodular feature compression, to further reduce dimensionality. CL exhibits linear parallelizability and consumes memory linear in the size of the co-occurrence graph. By leveraging the structural properties of the co-occurrence graph, CL can compress sparse datasets, such as KDD Cup 2012, that contain over 50M features down to 1024, using an order of magnitude fewer features than frequency-based truncation and the hashing trick while maintaining the same test error for linear models. This compression further enables the use of deep networks in this wide, sparse setting, where CL similarly has favorable performance compared to existing baselines for budgeted input dimension.Comment: 15 pages, 8 figures, under revie

    A Single Model Explains both Visual and Auditory Precortical Coding

    Full text link
    Precortical neural systems encode information collected by the senses, but the driving principles of the encoding used have remained a subject of debate. We present a model of retinal coding that is based on three constraints: information preservation, minimization of the neural wiring, and response equalization. The resulting novel version of sparse principal components analysis successfully captures a number of known characteristics of the retinal coding system, such as center-surround receptive fields, color opponency channels, and spatiotemporal responses that correspond to magnocellular and parvocellular pathways. Furthermore, when trained on auditory data, the same model learns receptive fields well fit by gammatone filters, commonly used to model precortical auditory coding. This suggests that efficient coding may be a unifying principle of precortical encoding across modalities

    Deep Optics for Monocular Depth Estimation and 3D Object Detection

    Full text link
    Depth estimation and 3D object detection are critical for scene understanding but remain challenging to perform with a single image due to the loss of 3D information during image capture. Recent models using deep neural networks have improved monocular depth estimation performance, but there is still difficulty in predicting absolute depth and generalizing outside a standard dataset. Here we introduce the paradigm of deep optics, i.e. end-to-end design of optics and image processing, to the monocular depth estimation problem, using coded defocus blur as an additional depth cue to be decoded by a neural network. We evaluate several optical coding strategies along with an end-to-end optimization scheme for depth estimation on three datasets, including NYU Depth v2 and KITTI. We find an optimized freeform lens design yields the best results, but chromatic aberration from a singlet lens offers significantly improved performance as well. We build a physical prototype and validate that chromatic aberrations improve depth estimation on real-world results. In addition, we train object detection networks on the KITTI dataset and show that the lens optimized for depth estimation also results in improved 3D object detection performance.Comment: 10 pages, 5 figure

    Structural Residual Learning for Single Image Rain Removal

    Full text link
    To alleviate the adverse effect of rain streaks in image processing tasks, CNN-based single image rain removal methods have been recently proposed. However, the performance of these deep learning methods largely relies on the covering range of rain shapes contained in the pre-collected training rainy-clean image pairs. This makes them easily trapped into the overfitting-to-the-training-samples issue and cannot finely generalize to practical rainy images with complex and diverse rain streaks. Against this generalization issue, this study proposes a new network architecture by enforcing the output residual of the network possess intrinsic rain structures. Such a structural residual setting guarantees the rain layer extracted by the network finely comply with the prior knowledge of general rain streaks, and thus regulates sound rain shapes capable of being well extracted from rainy images in both training and predicting stages. Such a general regularization function naturally leads to both its better training accuracy and testing generalization capability even for those non-seen rain configurations. Such superiority is comprehensively substantiated by experiments implemented on synthetic and real datasets both visually and quantitatively as compared with current state-of-the-art methods

    4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks

    Full text link
    In many robotics and VR/AR applications, 3D-videos are readily-available sources of input (a continuous sequence of depth images, or LIDAR scans). However, those 3D-videos are processed frame-by-frame either through 2D convnets or 3D perception algorithms. In this work, we propose 4-dimensional convolutional neural networks for spatio-temporal perception that can directly process such 3D-videos using high-dimensional convolutions. For this, we adopt sparse tensors and propose the generalized sparse convolution that encompasses all discrete convolutions. To implement the generalized sparse convolution, we create an open-source auto-differentiation library for sparse tensors that provides extensive functions for high-dimensional convolutional neural networks. We create 4D spatio-temporal convolutional neural networks using the library and validate them on various 3D semantic segmentation benchmarks and proposed 4D datasets for 3D-video perception. To overcome challenges in the 4D space, we propose the hybrid kernel, a special case of the generalized sparse convolution, and the trilateral-stationary conditional random field that enforces spatio-temporal consistency in the 7D space-time-chroma space. Experimentally, we show that convolutional neural networks with only generalized 3D sparse convolutions can outperform 2D or 2D-3D hybrid methods by a large margin. Also, we show that on 3D-videos, 4D spatio-temporal convolutional neural networks are robust to noise, outperform 3D convolutional neural networks and are faster than the 3D counterpart in some cases.Comment: CVPR'1

    Learning Representations for Automatic Colorization

    Full text link
    We develop a fully automatic image colorization system. Our approach leverages recent advances in deep networks, exploiting both low-level and semantic representations. As many scene elements naturally appear according to multimodal color distributions, we train our model to predict per-pixel color histograms. This intermediate output can be used to automatically generate a color image, or further manipulated prior to image formation. On both fully and partially automatic colorization tasks, we outperform existing methods. We also explore colorization as a vehicle for self-supervised visual representation learning.Comment: ECCV 2016 (Project page: http://people.cs.uchicago.edu/~larsson/colorization/

    Recurrent Squeeze-and-Excitation Context Aggregation Net for Single Image Deraining

    Full text link
    Rain streaks can severely degrade the visibility, which causes many current computer vision algorithms fail to work. So it is necessary to remove the rain from images. We propose a novel deep network architecture based on deep convolutional and recurrent neural networks for single image deraining. As contextual information is very important for rain removal, we first adopt the dilated convolutional neural network to acquire large receptive field. To better fit the rain removal task, we also modify the network. In heavy rain, rain streaks have various directions and shapes, which can be regarded as the accumulation of multiple rain streak layers. We assign different alpha-values to various rain streak layers according to the intensity and transparency by incorporating the squeeze-and-excitation block. Since rain streak layers overlap with each other, it is not easy to remove the rain in one stage. So we further decompose the rain removal into multiple stages. Recurrent neural network is incorporated to preserve the useful information in previous stages and benefit the rain removal in later stages. We conduct extensive experiments on both synthetic and real-world datasets. Our proposed method outperforms the state-of-the-art approaches under all evaluation metrics. Codes and supplementary material are available at our project webpage: https://xialipku.github.io/RESCAN .Comment: Accepted by ECC

    Learning Invariant Color Features for Person Re-Identification

    Full text link
    Matching people across multiple camera views known as person re-identification, is a challenging problem due to the change in visual appearance caused by varying lighting conditions. The perceived color of the subject appears to be different with respect to illumination. Previous works use color as it is or address these challenges by designing color spaces focusing on a specific cue. In this paper, we propose a data driven approach for learning color patterns from pixels sampled from images across two camera views. The intuition behind this work is that, even though pixel values of same color would be different across views, they should be encoded with the same values. We model color feature generation as a learning problem by jointly learning a linear transformation and a dictionary to encode pixel values. We also analyze different photometric invariant color spaces. Using color as the only cue, we compare our approach with all the photometric invariant color spaces and show superior performance over all of them. Combining with other learned low-level and high-level features, we obtain promising results in ViPER, Person Re-ID 2011 and CAVIAR4REID datasets

    Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset

    Full text link
    Removing rain streaks from a single image has been drawing considerable attention as rain streaks can severely degrade the image quality and affect the performance of existing outdoor vision tasks. While recent CNN-based derainers have reported promising performances, deraining remains an open problem for two reasons. First, existing synthesized rain datasets have only limited realism, in terms of modeling real rain characteristics such as rain shape, direction and intensity. Second, there are no public benchmarks for quantitative comparisons on real rain images, which makes the current evaluation less objective. The core challenge is that real world rain/clean image pairs cannot be captured at the same time. In this paper, we address the single image rain removal problem in two ways. First, we propose a semi-automatic method that incorporates temporal priors and human supervision to generate a high-quality clean image from each input sequence of real rain images. Using this method, we construct a large-scale dataset of ∼\sim29.5K29.5K rain/rain-free image pairs that covers a wide range of natural rain scenes. Second, to better cover the stochastic distribution of real rain streaks, we propose a novel SPatial Attentive Network (SPANet) to remove rain streaks in a local-to-global manner. Extensive experiments demonstrate that our network performs favorably against the state-of-the-art deraining methods.Comment: Accepted by CVPR'19. Project page: https://stevewongv.github.io/derain-project.htm

    Modeling Bottom-Up and Top-Down Attention with a Neurodynamic Model of V1

    Full text link
    Previous studies suggested that lateral interactions of V1 cells are responsible, among other visual effects, of bottom-up visual attention (alternatively named visual salience or saliency). Our objective is to mimic these connections with a neurodynamic network of firing-rate neurons in order to predict visual attention. Early visual subcortical processes (i.e. retinal and thalamic) are functionally simulated. An implementation of the cortical magnification function is included to define the retinotopical projections towards V1, processing neuronal activity for each distinct view during scene observation. Novel computational definitions of top-down inhibition (in terms of inhibition of return and selection mechanisms), are also proposed to predict attention in Free-Viewing and Visual Search tasks. Results show that our model outpeforms other biologically-inpired models of saliency prediction while predicting visual saccade sequences with the same model. We also show how temporal and spatial characteristics of inhibition of return can improve prediction of saccades, as well as how distinct search strategies (in terms of feature-selective or category-specific inhibition) can predict attention at distinct image contexts.Comment: 27 pages, 19 figure
    • …
    corecore