3,124 research outputs found

    Sustainable Development Report: Blockchain, the Web3 & the SDGs

    Get PDF
    This is an output paper of the applied research that was conducted between July 2018 - October 2019 funded by the Austrian Development Agency (ADA) and conducted by the Research Institute for Cryptoeconomics at the Vienna University of Economics and Business and RCE Vienna (Regional Centre of Expertise on Education for Sustainable Development).Series: Working Paper Series / Institute for Cryptoeconomics / Interdisciplinary Researc

    Sustainable Development Report: Blockchain, the Web3 & the SDGs

    Get PDF
    This is an output paper of the applied research that was conducted between July 2018 - October 2019 funded by the Austrian Development Agency (ADA) and conducted by the Research Institute for Cryptoeconomics at the Vienna University of Economics and Business and RCE Vienna (Regional Centre of Expertise on Education for Sustainable Development).Series: Working Paper Series / Institute for Cryptoeconomics / Interdisciplinary Researc

    UniquID: A Quest to Reconcile Identity Access Management and the Internet of Things

    Full text link
    The Internet of Things (IoT) has caused a revolutionary paradigm shift in computer networking. After decades of human-centered routines, where devices were merely tools that enabled human beings to authenticate themselves and perform activities, we are now dealing with a device-centered paradigm: the devices themselves are actors, not just tools for people. Conventional identity access management (IAM) frameworks were not designed to handle the challenges of IoT. Trying to use traditional IAM systems to reconcile heterogeneous devices and complex federations of online services (e.g., IoT sensors and cloud computing solutions) adds a cumbersome architectural layer that can become hard to maintain and act as a single point of failure. In this paper, we propose UniquID, a blockchain-based solution that overcomes the need for centralized IAM architectures while providing scalability and robustness. We also present the experimental results of a proof-of-concept UniquID enrolment network, and we discuss two different use-cases that show the considerable value of a blockchain-based IAM.Comment: 15 pages, 10 figure

    Blockchain in maritime cybersecurity

    Get PDF
    Blockchain technologies can be used for many different purposes from handling large amounts of data to creating better solutions for privacy protection, user authentication and a tamper proof ledger which lead to growing interest among industries. Smart contracts, fog nodes and different consensus methods create a scalable environment to secure multi-party connections with equal trust of participanting nodes’ identity. Different blockchains have multiple options for methodologies to use in different environments. This thesis has focused on Ethereum based open-source solutions that fit the remote pilotage environment the best. Autonomous vehicular networks and remote operatable devices have been a popular research topic in the last few years. Remote pilotage in maritime environment is persumed to reach its full potential with fully autonomous vessels in ten years which makes the topic interesting for all researchers. However cybersecurity in these environments is especially important because incidents can lead to financial loss, reputational damage, loss of customer and industry trust and environmental damage. These complex environments also have multiple attack vectors because of the systems wireless nature. Denial-of-service (DoS), man-in-the-middle (MITM), message or executable code injection, authentication tampering and GPS spoofing are one of the most usual attacks against large IoT systems. This is why blockchain can be used for creating a tamper proof environment with no single point-of-failure. After extensive research about best performing blockchain technologies Ethereum seemed the most preferable for decentralised maritime environment. In comparison to most of 2021 blockchain technologies that have focused on financial industries and cryptocurrencies, Ethereum has focused on decentralizing applications within many different industries. This thesis provides three Ethereum based blockchain protocol solutions and one operating system for these protocols. All have different features that add to the base blockchain technology but after extensive comparison two of these protocols perform better in means of concurrency and privacy. Hyperledger Fabric and Quorum provide many ways of tackling privacy, concurrency and parallel execution issues with consistent high throughput levels. However Hyperledger Fabric has far better throughput and concurrency management. This makes the solution of Firefly operating system with Hyperledger Fabric blockchain protocol the most preferable solution in complex remote pilotage fairway environment

    An empirical analysis of smart contracts: platforms, applications, and design patterns

    Full text link
    Smart contracts are computer programs that can be consistently executed by a network of mutually distrusting nodes, without the arbitration of a trusted authority. Because of their resilience to tampering, smart contracts are appealing in many scenarios, especially in those which require transfers of money to respect certain agreed rules (like in financial services and in games). Over the last few years many platforms for smart contracts have been proposed, and some of them have been actually implemented and used. We study how the notion of smart contract is interpreted in some of these platforms. Focussing on the two most widespread ones, Bitcoin and Ethereum, we quantify the usage of smart contracts in relation to their application domain. We also analyse the most common programming patterns in Ethereum, where the source code of smart contracts is available.Comment: WTSC 201
    • …
    corecore