34 research outputs found

    Symmetric Models, Singular Cardinal Patterns, and Indiscernibles

    Get PDF
    This thesis is on the topic of set theory and in particular large cardinal axioms, singular cardinal patterns, and model theoretic principles in models of set theory without the axiom of choice (ZF). The first task is to establish a standardised setup for the technique of symmetric forcing, our main tool. This is handled in Chapter 1. Except just translating the method in terms of the forcing method we use, we expand the technique with new definitions for properties of its building blocks, that help us easily create symmetric models with a very nice property, i.e., models that satisfy the approximation lemma. Sets of ordinals in symmetric models with this property are included in some model of set theory with the axiom of choice (ZFC), a fact that enables us to partly use previous knowledge about models of ZFC in our proofs. After the methods are established, some examples are provided, of constructions whose ideas will be used later in the thesis. The first main question of this thesis comes at Chapter 2 and it concerns patterns of singular cardinals in ZF, also in connection with large cardinal axioms. When we do assume the axiom of choice, every successor cardinal is regular and only certain limit cardinals are singular, such as ℔ω. Here we show how to construct several patterns of singular and regular cardinals in ZF. Since the partial orders that are used for the constructions of Chapter 1 cannot be used to construct successive singular cardinals, we start by presenting some partial orders that will help us achieve such combinations. The techniques used here are inspired from Moti Gitik’s 1980 paper “All uncountable cardinals can be singular”, a straightforward modification of which is in the last section of this chapter. That last section also tackles the question posed by Arthur Apter “Which cardinals can become simultaneously the first measurable and first regular uncountable cardinal?”. Most of this last part is submitted for publication in a joint paper with Arthur Apter , Peter Koepke, and myself, entitled “The first measurable and first regular cardinal can simultaneously be ℔ρ+1, for any ρ”. Throughout the chapter we show that several large cardinal axioms hold in the symmetric models we produce. The second main question of this thesis is in Chapter 3 and it concerns the consistency strength of model theoretic principles for cardinals in models of ZF, in connection with large cardinal axioms in models of ZFC. The model theoretic principles we study are variations of Chang conjectures, which, when looked at in models of set theory with choice, have very large consistency strength or are even inconsistent. We found that by removing the axiom of choice their consistency strength is weakened, so they become easier to study. Inspired by the proof of the equiconsistency of the existence of the ω1-Erdös cardinal with the original Chang conjecture, we prove equiconsistencies for some variants of Chang conjectures in models of ZF with various forms of Erdös cardinals in models of ZFC. Such equiconsistency results are achieved on the one direction with symmetric forcing techniques found in Chapter 1, and on the converse direction with careful applications of theorems from core model theory. For this reason, this chapter also contains a section where the most useful ‘black boxes’ concerning the Dodd-Jensen core model are collected. More detailed summaries of the contents of this thesis can be found in the beginnings of Chapters 1, 2, and 3, and in the conclusions, Chapter 4

    Combinatorial Properties and Dependent choice in symmetric extensions based on L\'{e}vy Collapse

    Get PDF
    We work with symmetric extensions based on L\'{e}vy Collapse and extend a few results of Arthur Apter. We prove a conjecture of Ioanna Dimitriou from her P.h.d. thesis. We also observe that if VV is a model of ZFC, then DC<ÎșDC_{<\kappa} can be preserved in the symmetric extension of VV in terms of symmetric system ⟹P,G,F⟩\langle \mathbb{P},\mathcal{G},\mathcal{F}\rangle, if P\mathbb{P} is Îș\kappa-distributive and F\mathcal{F} is Îș\kappa-complete. Further we observe that if VV is a model of ZF + DCÎșDC_{\kappa}, then DC<ÎșDC_{<\kappa} can be preserved in the symmetric extension of VV in terms of symmetric system ⟹P,G,F⟩\langle \mathbb{P},\mathcal{G},\mathcal{F}\rangle, if P\mathbb{P} is Îș\kappa-strategically closed and F\mathcal{F} is Îș\kappa-complete.Comment: Revised versio

    Benchmark Graphs for Practical Graph Isomorphism

    Get PDF
    The state-of-the-art solvers for the graph isomorphism problem can readily solve generic instances with tens of thousands of vertices. Indeed, experiments show that on inputs without particular combinatorial structure the algorithms scale almost linearly. In fact, it is non-trivial to create challenging instances for such solvers and the number of difficult benchmark graphs available is quite limited. We describe a construction to efficiently generate small instances for the graph isomorphism problem that are difficult or even infeasible for said solvers. Up to this point the only other available instances posing challenges for isomorphism solvers were certain incidence structures of combinatorial objects (such as projective planes, Hadamard matrices, Latin squares, etc.). Experiments show that starting from 1500 vertices our new instances are several orders of magnitude more difficult on comparable input sizes. More importantly, our method is generic and efficient in the sense that one can quickly create many isomorphism instances on a desired number of vertices. In contrast to this, said combinatorial objects are rare and difficult to generate and with the new construction it is possible to generate an abundance of instances of arbitrary size. Our construction hinges on the multipedes of Gurevich and Shelah and the Cai-F\"{u}rer-Immerman gadgets that realize a certain abelian automorphism group and have repeatedly played a role in the context of graph isomorphism. Exploring limits of such constructions, we also explain that there are group theoretic obstructions to generalizing the construction with non-abelian gadgets.Comment: 32 page

    Set Theory

    Get PDF

    A Potpourri of Partition Properties

    Get PDF
    The cardinal characteristic inequality r <= hm3 is proved. Several partition relations for ordinals and one for countable scattered types are given. Moreover partition relations for lexicographically ordered sequences of zeros and ones are given in a no-choice context

    Analytical Guide and updates for "Cardinal Arithmetic"

    Full text link
    Part A: A revised version of the guide in "Cardinal Arithmetic" ([Sh:g]), with corrections and expanded to include later works. Part B: Corrections to [Sh:g]. Part C: Contains some revised proof and improved theorems. Part D: Contains a list of relevant references
    corecore