466,913 research outputs found

    The polarized expression of Na+,K+-ATPase in epithelia depends on the association between beta-subunits located in neighboring cells

    Get PDF
    The polarized distribution of Na+,K+-ATPase plays a paramount physiological role, because either directly or through coupling with co- and countertransporters, it is responsible for the net movement of, for example, glucose, amino acids, Ca2+, K+, Cl-, and CO3H- across the whole epithelium. We report here that the beta-subunit is a key factor in the polarized distribution of this enzyme. 1) Madin-Darby canine kidney (MDCK) cells (epithelial from dog kidney) express the Na+,K+-ATPase over the lateral side, but not on the basal and apical domains, as if the contact with a neighboring cell were crucial for the specific membrane location of this enzyme. 2) MDCK cells cocultured with other epithelial types (derived from human, cat, dog, pig, monkey, rabbit, mouse, hamster, and rat) express the enzyme in all (100%) homotypic MDCK/MDCK borders but rarely in heterotypic ones. 3) Although MDCK cells never express Na+,K+-ATPase at contacts with Chinese hamster ovary (CHO) cells, they do when CHO cells are transfected with beta(1)-subunit from the dog kidney (CHO-beta). 4) This may be attributed to the adhesive property of the beta(1)-subunit, because an aggregation assay using CHO (mock-transfected) and CHO-beta cells shows that the expression of dog beta(1)-subunit in the plasma membrane does increase adhesiveness. 5) This adhesiveness does not involve adherens or tight junctions. 6) Transfection of beta(1)-subunit forces CHO-beta cells to coexpress endogenous a-subunit. Together, our results indicate that MDCK cells express Na+,K+-ATPase at a given border provided the contacting cell expresses the dog P,-subunit. The cell-cell interaction thus established would suffice to account for the polarized expression and positioning of Na+,K+-ATPase in epithelial cells

    A theoretical estimate for nucleotide sugar demand towards Chinese Hamster Ovary cellular glycosylation

    Get PDF
    Glycosylation greatly influences the safety and efficacy of many of the highest-selling recombinant therapeutic proteins (rTPs). In order to define optimal cell culture feeding strategies that control rTP glycosylation, it is necessary to know how nucleotide sugars (NSs) are consumed towards host cell and rTP glycosylation. Here, we present a theoretical framework that integrates the reported glycoproteome of CHO cells, the number of N-linked and O-GalNAc glycosylation sites on individual host cell proteins (HCPs), and the carbohydrate content of CHO glycosphingolipids to estimate the demand of NSs towards CHO cell glycosylation. We have identified the most abundant N-linked and O-GalNAc CHO glycoproteins, obtained the weighted frequency of N-linked and O-GalNAc glycosites across the CHO cell proteome, and have derived stoichiometric coefficients for NS consumption towards CHO cell glycosylation. By combining the obtained stoichiometric coefficients with previously reported data for specific growth and productivity of CHO cells, we observe that the demand of NSs towards glycosylation is significant and, thus, is required to better understand the burden of glycosylation on cellular metabolism. The estimated demand of NSs towards CHO cell glycosylation can be used to rationally design feeding strategies that ensure optimal and consistent rTP glycosylation

    Recombinant Vgr-1/BMP-6-expressing tumors induce fibrosis and endochondral bone formation in vivo.

    Get PDF
    Members of the TGF-beta superfamily appear to modulate mesenchymal differentiation, including the processes of cartilage and bone formation. Nothing is yet known about the function of the TGF-beta-related factor vgr-1, also called bone morphogenetic protein-6 (BMP-6), and only limited studies have been conducted on the most closely related factors BMP-5, osteogenic protein-1 (OP-1) or BMP-7, and OP-2. Because vgr-1 mRNA has been localized in hypertrophic cartilage, this factor may play a vital role in endochondral bone formation. We developed antibodies to vgr-1, and documented that vgr-1 protein was expressed in hypertrophic cartilage of mice. To further characterize the role of this protein in bone differentiation, we generated CHO cells that overexpressed recombinant murine vgr-1 protein. Western blot analysis documented that recombinant vgr-1 protein was secreted into the media and was proteolytically processed to yield the mature vgr-1 molecule. To assess the biological activity of recombinant vgr-1 in vivo, we introduced the vgr-1-expressing CHO cells directly into the subcutaneous tissue of athymic nude mice. CHO-vgr-1 cells produced localized tumors, and the continuous secretion of vgr-1 resulted in tumors with a strikingly different gross and histological appearance as compared to the parental CHO cells. The tumors of control CHO cells were hemorrhagic, necrotic, and friable, whereas the CHO-vgr-1 tumors were dense, firm, and fibrotic. In contrast with control CHO tumors, the nests of CHO-vgr-1 tumor cells were surrounded by extensive connective tissue, which contained large regions of cartilage and bone. Further analysis indicated that secretion of vgr-1 from the transfected CHO tumor cells induced the surrounding host mesenchymal cells to develop along the endochondral bone pathway. These findings suggest that endochondral bone formation

    High-Level Expression of Various Apolipoprotein (a) Isoforms by "Transferrinfection". The Role of Kringle IV Sequences in the Extracellular Association with Low-Density Lipoprotein

    Get PDF
    Characterization of the assembly of lipoprotein(a) [Lp(a)] is of fundamental importance to understanding the biosynthesis and metabolism of this atherogenic lipoprotein. Since no established cell lines exist that express Lp(a) or apolipoprotein(a) [apo(a)], a "transferrinfection" system for apo(a) was developed utilizing adenovirus receptor- and transferrin receptor-mediated DNA uptake into cells. Using this method, different apo(a) cDNA constructions of variable length, due to the presence of 3, 5, 7, 9, 15, or 18 internal kringle IV sequences, were expressed in cos-7 cells or CHO cells. All constructions contained kringle IV-36, which includes the only unpaired cysteine residue (Cys-4057) in apo(a). r-Apo(a) was synthesized as a precursor and secreted as mature apolipoprotein into the medium. When medium containing r-apo(a) with 9, 15, or 18 kringle IV repeats was mixed with normal human plasma LDL, stable complexes formed that had a bouyant density typical of Lp(a). Association was substantially decreased if Cys-4057 on r-apo(a) was replaced by Arg by site-directed mutagenesis or if Cys-4057 was chemically modified. Lack of association was also observed with r-apo(a) containing only 3, 5, or 7 kringle IV repeats without "unique kringle IV sequences", although Cys-4057 was present in all of these constructions. Synthesis and secretion of r-apo(a) was not dependent on its sialic acid content. r-Apo(a) was expressed even more efficiently in sialylation-defective CHO cells than in wild-type CHO cells. In transfected CHO cells defective in the addition of N-acetylglucosamine, apo(a) secretion was found to be decreased by 50%. Extracellular association with LDL was not affected by the carbohydrate moiety of r-apo(a), indicating a protein-protein interaction between r-apo(a) and apoB. These results show that, besides kringle IV-36, other kringle IV sequences are necessary for the extracellular association of r-apo(a) with LDL. Changes in the carbohydrate moiety of apo(a), however, do not affect complex formation

    A natural killer cell receptor specific for a major histocompatibility complex class I molecule.

    Get PDF
    Target cell expression of major histocompatibility complex (MHC) class I molecules correlates with resistance to lysis by natural killer (NK) cells. Prior functional studies of the murine NK cell surface molecule, Ly-49, suggested its role in downregulating NK cell cytotoxicity by specifically interacting with target cell H-2Dd molecules. In support of this hypothesis, we now demonstrate a physical interaction between H-2Dd and Ly-49 in both qualitative and quantitative cell-cell binding assays employing a stable transfected Chinese hamster ovary (CHO) cell line expressing Ly-49 and MHC class I transfected target cells. Binding occurred only when CHO cells expressed Ly-49 at high levels and targets expressed H-2Dd by transfection. Monoclonal antibody blocking experiments confirmed this interaction. These studies indicate that the specificity of natural killing is influenced by NK cell receptors that engage target cell MHC class I molecules

    Heparan sulfate and control of cell division: adhesion and proliferation of mutant CHO-745 cells lacking xylosyl transferase

    Get PDF
    We have examined the role of cell surface glycosaminoglycans in cell division: adhesion and proliferation of Chinese hamster ovary (CHO) cells. We used both wild-type (CHO-K1) cells and a mutant (CHO-745) which is deficient in the synthesis of proteoglycans due to lack of activity of xylosyl transferase. Using different amounts of wild-type and mutant cells, little adhesion was observed in the presence of laminin and type I collagen. However, when fibronectin or vitronectin was used as substrate, there was an enhancement in the adhesion of wild-type and mutant cells. Only CHO-K1 cells showed a time-dependent adhesion on type IV collagen. These results suggest that the two cell lines present different adhesive profiles. Several lines of experimental evidence suggest that heparan sulfate proteoglycans play a role in cell adhesion as positive modulators of cell proliferation and as key participants in the process of cell division. Proliferation and cell cycle assays clearly demonstrate that a decrease in the amount of glycosaminoglycans does not inhibit the proliferation of mutant CHO-745 cells when compared to the wild type CHO-K1, in agreement with the findings that both CHO-K1 and CHO-745 cells take 8 h to enter the S phase.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de BioquímicaUniversidade Federal do Rio Grande do Norte Departamento de BioquímicaUniversidade Federal do Paraná Departamento de Biologia CelularUNIFESP, EPM, Depto. de BioquímicaSciEL

    Cell Propagation of Cholera Toxin CTA ADP-Ribosylating Factor by Exosome Mediated Transfer

    Get PDF
    In this study, we report how the cholera toxin (CT) A subunit (CTA), the enzyme moiety responsible for signaling alteration in host cells, enters the exosomal pathway, secretes extracellularly, transmits itself to a cell population. The first evidence for long-term transmission of CT's toxic effect via extracellular vesicles was obtained in Chinese hamster ovary (CHO) cells. To follow the CT intracellular route towards exosome secretion, we used a novel strategy for generating metabolically-labeled fluorescent exosomes that can be counted by flow cytometry assay (FACS) and characterized. Our results clearly show the association of CT with exosomes, together with the heat shock protein 90 (HSP90) and Protein Disulfide Isomerase (PDI) molecules, proteins required for translocation of CTA across the ER membrane into the cytoplasm. Confocal microscopy showed direct internalization of CT containing fluorescent exo into CHO cells coupled with morphological changes in the recipient cells that are characteristic of CT action. Moreover, Me665 cells treated with CT-containing exosomes showed an increase in Adenosine 3',5'-Cyclic Monophosphate (cAMP) level, reaching levels comparable to those seen in cells exposed directly to CT. Our results prompt the idea that CT can exploit an exosome-mediated cell communication pathway to extend its pathophysiological action beyond an initial host cell, into a multitude of cells. This finding could have implications for cholera disease pathogenesis and epidemiology

    Truncated human endothelin receptor A produced by alternative splicing and its expression in melanoma

    Get PDF
    In this study, reverse transcriptase polymerase chain reaction was used to amplify human endothelin receptor A (ETA) and ETB receptor mRNA. A truncated ETA receptor transcript with exons 3 and 4 skipped was found. The skipping of these two exons results in 109 amino acids being deleted from the receptor. The truncated receptor was expressed in all tissues and cells examined, but the level of expression varied. In melanoma cell lines and melanoma tissues, the truncated receptor gene was the major species, whereas the wild-type ETA was predominant in other tissues. A 1.9-kb ETA transcript was identified in melanoma cell lines by Northern blot, which was much smaller than the transcript in heart and in other tissues reported previously (4.3 kb). The cDNA coding regions of the truncated and wild-type ETA receptors were stably transfected into Chinese hamster ovary (CHO) cells. The truncated ETA receptor-transfected CHO cells did not show binding affinity to endothelin 1 (ET-1) or endothelin 3 (ET-3). The function and biological significance of this truncated ETA receptor is not clear, but it may have regulatory roles for cell responses to ETs

    Tolerance to mutations in the foot-and-mouth disease virus integrin-binding RGD region is different in cultured cells and in vivo and depends on the capsid sequence context.

    Get PDF
    Engineered RNAs carrying substitutions in the integrin receptor-binding Arg-Gly-Asp (RGD) region of foot-and-mouth disease virus (FMDV) were constructed (aa 141-147 of VP1 capsid protein) and their infectivity was assayed in cultured cells and suckling mice. The effect of these changes was studied in the capsid proteins of two FMDVs, C-S8c1, which enters cells through integrins, and 213hs(-), a derivative highly adapted to cell culture whose ability to infect cells using the glycosaminoglycan heparan sulfate (HS) as receptor, acquired by multiple passage on BHK-21 cells, has been abolished. The capsid sequence context determined infectivity in cultured cells and directed the selection of additional replacements in structural proteins. Interestingly, a viral population derived from a C-S8c1/L144A mutant, carrying only three substitutions in the capsid, was able to expand tropism to wild-type (wt) and mutant (mt)glycosaminoglycan-deficient CHO cells. In contrast, the 213hs(-) capsid tolerated all substitutions analysed with no additional mutations, and the viruses recovered maintained the ability of the 213hs(-) parental virus to infect wt and mt CHO cells. Viruses derived from C-S8c1 with atypical RGD regions were virulent and transmissible for mice with no other changes in the capsid. Substitution of Asp143 for Ala in the C-S8c1 capsid eliminated infectivity in cultured cells and mice. Co-inoculation with a neutralizing monoclonal antibody directed against the type C FMDV RGD region abolished infectivity of C-S8c1 virus on suckling mice, suggesting that FMDV can infect mice using integrins. Sequence requirements imposed for viral entry in vitro and in vivo are discussed
    corecore