312,853 research outputs found
Fabrication techniques for organic electrolyte battery
Experiments in fabrication and testing of silver chloride electrodes for use in organic electrolyte batteries are discussed. Electrodes were fabricated by pelletizing, sintering, hot press binding, and paste binding silver chloride on expanded metal grids of nickel or silver. Each technique was investigated by statistically designed factorial experiment
Halide binding by the purified halorhodopsin chromoprotein. II. New chloride-binding sites revealed by 35Cl NMR
Halorhodopsin is a light-driven chloride pump in the cell membrane of Halobacterium halobium. Recently, a polypeptide of apparent Mr = 20,000 has been purified that contains the halorhodopsin chromophore. Here we use 35Cl NMR to show that the purified chromoprotein possesses two previously unknown classes of chloride-binding sites. One class exhibits a low affinity (KD much greater than 1 M) for chloride and bromide. The second class exhibits a higher affinity (KD = 110 ± 50 mM) for chloride and also binds other anions according to the affinity series I-, SCN- greater than Br-, NO-3 greater than Cl- greater than F- , citrate. Both classes of NMR site remain intact at pH 11, indicating that the essential positive charges are provided by arginine. Also, both classes are unaffected by bleaching, suggesting that the sites are not in the immediate vicinity of the halorhodopsin chromophore. Although the chromoprotein also appears to contain the chloride- transport site (Steiner, M., Oesterhelt, D., Ariki, M., and Lanyi, J. K. (1984) J. Biol. Chem. 259, 2179-2184), this site was not detected by 35Cl NMR, suggesting that the transport site is in the interior of the protein where it is sampled slowly by chloride in the medium. It is proposed that the purified chromoprotein possesses a channel leading from the medium to the transport site and that the channel contains the high affinity NMR site which facilitates the migration of chloride between the medium and the transport site.
We have also used 35Cl NMR to study chloride binding to purified monomeric bacteriorhodopsin; however, this protein contains no detectable chloride-binding sites
The minimal structure containing the band 3 anion transport site. A 35Cl NMR study
35Cl NMR, which enables observation of chloride binding to the anion transport site on band 3, is used in the present study to determine the minimal structure containing the intact transport site. Removal of cytoskeletal and other nonintegral membrane proteins, or removal of the 40-kDa cytoskeletal domain of band 3, each leave the transport site intact. Similarly, cleavage of the 52-kDa transport domain into 17- and 35-kDa fragments by chymotrypsin leaves the transport site intact. Extensive proteolysis by papain reduces the integral red cell membrane proteins to their transmembrane segments. Papain treatment removes approximately 60% of the extramembrane portion of the transport domain and produces small fragments primarily in the range 3-7 kDa, with 5 kDa being most predominant. Papain treatment damages, but does not destroy, chloride binding to the transport site; thus, the minimal structure containing the transport site is composed solely of transmembrane segments. In short, the results are completely consistent with a picture in which the transport site is buried in the membrane where it is protected from proteolysis; the transmembrane segments that surround the transport site are held together by strong attractive forces within the bilayer; and the transport site is accessed by solution chloride via an anion channel leading from the transport site to the solution
CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations
CBS domains are defined as sequence motifs that occur in several different proteins in all kingdoms of life. Although thought to be regulatory, their exact functions have been unknown. However, their importance was underlined by findings that mutations in conserved residues within them cause a variety of human hereditary diseases, including (with the gene mutated in parentheses): Wolff-Parkinson-White syndrome (γ2 subunit of AMP-activated protein kinase); retinitis pigmentosa (IMP dehydrogenase-1); congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members); and homocystinuria (cystathionine β-synthase). AMP-activated protein kinase is a sensor of cellular energy status that is activated by AMP and inhibited by ATP, but the location of the regulatory nucleotide-binding sites (which are prime targets for drugs to treat obesity and diabetes) was not characterized. We now show that tandem pairs of CBS domains from AMP-activated protein kinase, IMP dehydrogenase-2, the chloride channel CLC2, and cystathionine β-synthase bind AMP, ATP, or S-adenosyl methionine,while mutations that cause hereditary diseases impair this binding. This shows that tandem pairs of CBS domains act, in most cases, as sensors of cellular energy status and, as such, represent a newly identified class of binding domain for adenosine derivatives
Chloride binding to the anion transport binding sites of band 3. A 35Cl NMR study
Band 3 is an integral membrane protein that exchanges anions across the red cell membrane. Due to the abundance and the high turnover rate of the band 3 transport unit, the band 3 system is the most heavily used ion-transport system in a typical vertebrate organism. Here we show that 35Cl NMR enables direct and specific observation of substrate Cl- binding to band 3 transport sites, which are identified by a variety of criteria: (a) the sites are inhibited by 4,4'- dinitrostilbene -2,2'- disulfonate, which is known to inhibit competitively Cl- binding to band 3 transport sites; (b) the sites have affinities for 4,4'- dinitrostilbene -2,2'-disulfonate and Cl- that are quantitatively similar to the known affinities of band 3 transport sites for these anions; and (c) the sites have relative affinities for Cl-, HCO-3, F-, and I- that are quantitatively similar to the known relative affinities of band 3 transport sites for these anions. The 35Cl NMR assay also reveals a class of low affinity Cl- binding sites (KD much greater than 0.5 M) that are not affected by 4,4'- dinitrostilbene -2,2'- disulfonate. These low affinity sites may be responsible for the inhibition of band 3 catalyzed anion exchange that has been previously observed at high [Cl-]. In the following paper the 35Cl NMR assay is used to resolve the band 3 transport sites on opposite sides of the membrane, thereby enabling direct observation of the transmembrane recruitment of transport sites
Non-steady state chloride migration and binding in cracked self-compacting concrete
We adopted a notch method to study the influence of crack width (macro level) on chloride transport and binding of cracked concrete under a non-steady state migration test. The results show that migration coefficient of cracked concrete increases with increasing crack width up to a critical value (0.43 mm), for the whole concrete or the area close to crack; the increase of migration coefficient could be independent from crack parameter when a critical crack width is reached. For chloride binding, Langmuir isotherms of cracked concrete samples exhibit the similar decreasing trend as crack width increases from 0.27 to 1.96 mm. The increased current value could be responsible for the trend based on the hypothesis of electric force
Activity of glucose oxidase functionalized onto magnetic nanoparticles
BACKGROUND: Magnetic nanoparticles have been significantly used for coupling with biomolecules, due to their unique properties. METHODS: Magnetic nanoparticles were synthesized by thermal co-precipitation of ferric and ferrous chloride using two different base solutions. Glucose oxidase was bound to the particles by direct attachment via carbodiimide activation or by thiophene acetylation of magnetic nanoparticles. Transmission electron microscopy was used to characterize the size and structure of the particles while the binding of glucose oxidase to the particles was confirmed using Fourier transform infrared spectroscopy. RESULTS: The direct binding of glucose oxidase via carbodiimide activity was found to be more effective, resulting in bound enzyme efficiencies between 94–100% while thiophene acetylation was 66–72% efficient. Kinetic and stability studies showed that the enzyme activity was more preserved upon binding onto the nanoparticles when subjected to thermal and various pH conditions. The overall activity of glucose oxidase was improved when bound to magnetic nanoparticles CONCLUSION: Binding of enzyme onto magnetic nanoparticles via carbodiimide activation is a very efficient method for developing bioconjugates for biological application
A tight coupling between β\u3csub\u3e2\u3c/sub\u3eY97 and β\u3csub\u3e2\u3c/sub\u3eF200 of the GABA\u3csub\u3eA\u3c/sub\u3e receptor mediates GABA binding
The GABAA receptor is an oligopentameric chloride channel that is activated via conformation changes induced upon the binding of the endogenous ligand, GABA, to the extracellular inter-subunit interfaces. Although dozens of amino acid residues at the α/β interface have been implicated in ligand binding, the structural elements that mediate ligand binding and receptor activation are not yet fully described. In this study, double-mutant cycle analysis was employed to test for possible interactions between several arginines (α1R67, α1R120, α1R132, and β2R207) and two aromatic residues (β2Y97 and β2F200) that are present in the ligand-binding pocket and are known to influence GABA affinity. Our results show that neither α1R67 nor α1R120 is functionally coupled to either of the aromatics, whereas a moderate coupling exists between α1R132 and both aromatic residues. Significant functional coupling between β2R207 and both β2Y97 and β2F200 was found. Furthermore, we identified an even stronger coupling between the two aromatics, β2Y97 and β2F200, and for the first time provided direct evidence for the involvement of β2Y97 and β2F200 in GABA binding. As these residues are tightly linked, and mutation of either has similar, severe effects on GABA binding and receptor kinetics, we believe they form a single functional unit that may directly coordinate GABA
Effects of chloride concentration on microstructure of cement pastes by AC impedance spectroscopy HU
Alternating current (AC) impedance spectroscopy has been applied in characterizing
microstructural evolution and electrochemical properties of cement-based systems. In the present
paper, an equivalent circuit model was proposed to study the influences of chloride binding on
microstructure and solid-liquid interfacial properties of cement paste. Chloride concentration index of
pore solution was measured to correlate to the parameters in equivalent circuit model corresponding
to electrical double layer at solid-liquid interface. The results showed that the parameters of
equivalent circuit model can properly indicate the microstructure and interfacial properties of cement
paste. Resistance of continuous pores was gradually decreased with chloride concentration in soaking
solution due to the higher conductivity of pore solution. The capacitance of electrical double layer was
increased with chloride concentration in pore solution due to more content of chloride ions in
electrical double layer. While the thickness of electrical double layer was decreased as chloride
concentration increased, which is in agreement with mathematical calculation
- …
