2,592 research outputs found

    Enzyme replacement therapy with taliglucerase alfa: 36-month safety and efficacy results in adult patients with Gaucher disease previously treated with imiglucerase.

    Get PDF
    Taliglucerase alfa is the first available plant cell-expressed human recombinant therapeutic protein. It is indicated for treatment of patients with type 1 Gaucher disease (GD) in adult and pediatric patients in several countries. Study PB-06-002 examined the safety and efficacy of taliglucerase alfa for 9 months in patients who previously received imiglucerase. The results of adult patients from Study PB-06-002 who continued receiving taliglucerase alfa in extension Study PB-06-003 for up to 36 months are reported here. Eighteen patients received at least one dose of taliglucerase alfa in Study PB-06-003; 10 patients completed 36 total months of therapy, and four patients who transitioned to commercial drug completed 30-33 months of treatment. In patients who completed 36 total months of treatment, mean percent (±standard error) changes from baseline/time of switch to taliglucerase alfa to 36 months were as follows: hemoglobin concentration, -1.0% (±1.9%; n = 10); platelet count, +9.3% (±9.8%; n = 10); spleen volume measured in multiples of normal (MN), -19.8% (±9.9%; n = 7); liver volume measured in MN, +0.9% (±5.4%; n = 8); chitotriosidase activity, -51.5% (±8.1%; n = 10); and CCL18 concentration, -36.5 (±8.0%; n = 10). Four patients developed antidrug antibodies, including one with evidence of neutralizing activity in vitro. All treatment-related adverse events were mild or moderate and transient. The 36-month results of switching from imiglucerase to taliglucerase alfa treatment in adults with GD provide further data on the clinical safety and efficacy of taliglucerase alfa beyond the initial 9 months of the original study. www.clinicaltrials.gov identifier NCT00705939. Am. J. Hematol. 91:661-665, 2016. © 2016 Wiley Periodicals, Inc

    Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation

    Get PDF
    Funding: JW and NARG thank the Wellcome Trust (080088, 086827, 075470), The Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (097377) and the European Union ALLFUN (FP7/2007 2013, HEALTH-2010-260338) for funding. MGN was supported by a Vici grant of the Netherlands Organisation for Scientific Research. AJPB and DMM were funded by STRIFE, ERC-2009-AdG-249793 and AJPB additionally by FINSysB, PITN-GA-2008-214004 and the BBSRC [BB/F00513X/1]. MDL was supported by the MRC (MR/J008230/1). GDB and SV were funded by the Wellcome Trust (086558) and TB and MK were funded by the Deutsche Forschungsgemeinschaft (Bi 696/3-1; Bi 696/5-2; Bi 696/10-1). MS was supported by the Deutsche Forschungsgemeinschaft (Sch 897/1-3) and the National Institute of Dental and Craniofacial Research (R01 DE017514-01). TDK and RKSM were funded by the National Institute of Health (AR056296, AI101935) and the American Lebanese Syrian Associated Charities (ALSAC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Glucosylsphingosine Is a Highly Sensitive and Specific Biomarker for Primary Diagnostic and Follow-Up Monitoring in Gaucher Disease in a Non-Jewish, Caucasian Cohort of Gaucher Disease Patients

    Get PDF
    Gaucher disease (GD) is the most common lysosomal storage disorder (LSD). Based on a deficient β-glucocerebrosidase it leads to an accumulation of glucosylceramide. Standard diagnostic procedures include measurement of enzyme activity, genetic testing as well as analysis of chitotriosidase and CCL18/PARC as biomarkers. Even though chitotriosidase is the most well-established biomarker in GD, it is not specific for GD. Furthermore, it may be false negative in a significant percentage of GD patients due to mutation. Additionally, chitotriosidase reflects the changes in the course of the disease belatedly. This further enhances the need for a reliable biomarker, especially for the monitoring of the disease and the impact of potential treatments.Here, we evaluated the sensitivity and specificity of the previously reported biomarker Glucosylsphingosine with regard to different control groups (healthy control vs. GD carriers vs. other LSDs).Only GD patients displayed elevated levels of Glucosylsphingosine higher than 12 ng/ml whereas the comparison controls groups revealed concentrations below the pathological cut-off, verifying the specificity of Glucosylsphingosine as a biomarker for GD. In addition, we evaluated the biomarker before and during enzyme replacement therapy (ERT) in 19 patients, demonstrating a decrease in Glucosylsphingosine over time with the most pronounced reduction within the first 6 months of ERT. Furthermore, our data reveals a correlation between the medical consequence of specific mutations and Glucosylsphingosine.In summary, Glucosylsphingosine is a very promising, reliable and specific biomarker for GD

    Evidence Supporting a Role for Mammalian Chitinases in Efficacy of Caspofungin against Experimental Aspergillosis in Immunocompromised Rats

    Get PDF
    Objectives:Caspofungin, currently used as salvage therapy for invasive pulmonary aspergillosis (IPA), strangely only causes morphological changes in fungal growth in vitro but does not inhibit the growth. In vivo it has good efficacy. Therefore the question arises how this in vivo activity is reached. Caspofungin is known to increase the amount of chitin in the fungal cell wall. Mammals produce two chitinases, chitotriosidase and AMCase, which can hydrolyse chitin. We hypothesized that the mammalian chitinases play a role in the in vivo efficacy of caspofungin.Methods:In order to determine the role of chitotriosidase and AMCase in IPA, both chitinases were measured in rats which did or did not receive caspofungin treatment. In order to understand the role of each chitinase in the breakdown of the caspofungin-exposed cells, we also exposed caspofungin treated fungi to recombinant enzymes in vitro.Results:IPA in immunocompromised rats caused a dramatic increase in chitinase activity. This increase in chitinase activity was still noted when rats were treated with caspofungin. In vitro, it was demonstrated that the action of both chitinases were needed to lyse the f

    Gaucher Disease and Myelofibrosis: A Combined Disease or a Misdiagnosis?

    Get PDF
    Background: Gaucher disease (GD) and primary myelofibrosis (PMF) share similar clinical and laboratory features, such as cytopenia, hepatosplenomegaly, and marrow fibrosis, often resulting in a misdiagnosis. Case Report: We report here the case of a young woman with hepatosplenomegaly, leukopenia, and thrombocytopenia. Based on bone marrow (BM) findings and on liver biopsy showing extramedullary hematopoiesis, an initial diagnosis of PMF was formulated. The patient refused stem cell transplantation from an HLA-identical sibling. Low-dose melphalan was given, without any improvement. Two years later, a BM evaluation showed Gaucher cells. Low glucocerebrosidase and high chitotriosidase levels were indicative for GD. Molecular analysis revealed N370S/complex I mutations. Enzyme replacement therapy with imiglucerase was commenced, resulting in clinical and hematological improvements. Due to an unexpected and persistent organomegaly, PMF combined with GD were suspected. JAK2V617F, JAK2 exon 12, MPL, calreticulin, and exon 9 mutations were negative, and BM examination showed no marrow fibrosis. PMF was excluded. Twenty years after starting treatment, the peripheral cell count and liver size were normal, whereas splenomegaly persisted. Conclusion: In order to avoid a misdiagnosis, a diagnostic algorithm for patients with hepatosplenomegaly combined with cytopenia is suggested

    New insights into the enzymatic mechanism of human chitotriosidase (CHIT1) catalytic domain by atomic resolution X-ray diffraction and hybrid QM/MM

    Get PDF
    Chitotriosidase (CHIT1) is a human chitinase belonging to the highly conserved glycosyl hydrolase family 18 (GH18). GH18 enzymes hydrolyze chitin, an N-acetylglucosamine polymer synthesized by lower organisms for structural purposes. Recently, CHIT1 has attracted attention owing to its upregulation in immune-system disorders and as a marker of Gaucher disease. The 39 kDa catalytic domain shows a conserved cluster of three acidic residues, Glu140, Asp138 and Asp136, involved in the hydrolysis reaction. Under an excess concentration of substrate, CHIT1 and other homologues perform an additional activity, transglycosylation. To understand the catalytic mechanism of GH18 chitinases and the dual enzymatic activity, the structure and mechanism of CHIT1 were analyzed in detail. The resolution of the crystals of the catalytic domain was improved from 1.65 Å (PDB entry 1waw ) to 0.95-1.10 Å for the apo and pseudo-apo forms and the complex with chitobiose, allowing the determination of the protonation states within the active site. This information was extended by hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. The results suggest a new mechanism involving changes in the conformation and protonation state of the catalytic triad, as well as a new role for Tyr27, providing new insights into the hydrolysis and transglycosylation activities.Fil: Fadel, Firas. Centre National de la Recherche Scientifique; Francia. Institut de Génétique et de Biologie Moléculaire et Cellulaire; FranciaFil: Zhao, Yuguang. University of Oxford; Reino UnidoFil: Cachau, Raul. Frederick National Laboratory for Cancer Research; Estados UnidosFil: Cousido Siah, Alexandra. Centre National de la Recherche Scientifique; Francia. Institut de Génétique et de Biologie Moléculaire et Cellulaire; FranciaFil: Ruiz, Francesc X.. Centre National de la Recherche Scientifique; Francia. Institut de Génétique et de Biologie Moléculaire et Cellulaire; FranciaFil: Harlos, Karl. University of Oxford; Reino UnidoFil: Howard, Eduardo Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Centre National de la Recherche Scientifique; Francia. Institut de Génétique et de Biologie Moléculaire et Cellulaire; FranciaFil: Mitschler, Andre. Centre National de la Recherche Scientifique; Francia. Institut de Génétique et de Biologie Moléculaire et Cellulaire; FranciaFil: Podjarny, Alberto Daniel. Centre National de la Recherche Scientifique; Francia. Institut de Génétique et de Biologie Moléculaire et Cellulaire; Franci

    Investigating problematic severe asthma in children : a translational approach

    Get PDF
    Children with problematic severe asthma (PA) have persistent symptoms and/or severe exacerbations despite treatment with high doses of currently available asthma medications. The term PA includes children who are difficult to treat due to unidentified exacerbating factors (e.g. allergens or environmental hazards, comorbidities, psychological and social issues, and/or poor adherence) and those lacking identifiable aggravating factors but, nonetheless, do not respond well to asthma therapy. Children with PA are a heterogeneous group of patients with varying clinical presentations, pulmonary function and patterns of inflammation. This thesis is based on the results of a Swedish nationwide cross-sectional study in which school aged children with PA (n=57) were compared to age matched peers with persistent, but controlled asthma (CA), (n=39). The major objectives were to identify distinguishing features of children suffering from PA, to differentiate between children who were difficult to treat and those who were severely resistant to therapy and to investigate novel and potentially clinical relevant biomarkers of PA. PA was defined by insufficient asthma control despite high doses of inhaled corticosteroids. The protocol included a detailed characterization of: history and clinical presentation; pulmonary function; bronchial hyperresponsiveness; inflammatory biomarkers in blood (including white blood cells, interleukin-5 and chitinases (chitotriosidase and the chitinase-like protein YKL-40)), urine (EPX) and exhaled air (FeNO); allergy (IgE antibodies, component resolved allergy diagnostics, basophil allergen threshold sensitivity (CD-sens)); morphology (computerized tomography of sinuses and lungs (in the PA group only)). The major distinguishing features of children with PA involve familial background (heredity, socioeconomic status), clinical presentation (comorbidities and triggering factors) and pathophysiological differences including degree of airway obstruction, bronchial hyperresponsiveness and inflammatory profile (IL-5, number of eosinophilic and neutrophilic cells in blood). Sixty percent of children with PA had therapy-resistant asthma, with the remainder being difficult to treat due to identified aggravating factors. Individual IgE-responses were similar between children with PA and CA. Children with PA were more often multi-sensitized to > 3 single lipocalin (nMus m 1, rEqu c 1, Fel d 4, rCan f 1, 2), kallikrein (rCan f 5) and secretoglobin (rFel d 1) allergens compared to children with CA. Cat-allergic children with PA had higher allergen sensitivity, as measured by CDsens, compared to cat-allergic peers with CA. Furthermore, CD-sens correlated with clinical markers of asthmatic disease, including asthma control and biomarkers of eosinophilic inflammation. YKL-40 levels and chitotriosidase activity were increased in the serum of children with PA, and YKL-40 specifically correlated with airway remodelling (as assessed by computerized tomography) and blood neutrophils in children severely resistant to asthma therapy. By employing a comprehensive and standardized clinical assessment we have discerned specific features of children with PA and identified children who are severely resistant to therapy. We have applied two novel methods of allergy diagnostics (Component resolved diagnostics and CD-sens) and found that these two methods provide relevant information when investigating children with PA. Finally, our findings confirm that YKL-40 is a potential biomarker of asthma severity and airway remodeling. A translational research approach is necessary when investigating associations between disease mechanisms and clinical presentation in complex diseases

    Dual transcriptomics reveals co-evolutionary mechanisms of intestinal parasite infections in blue mussels Mytilus edulis

    Get PDF
    On theoretical grounds, antagonistic co-evolution between hosts and their parasites should be a widespread phenomenon but only received little empirical support sofar. Consequently, the underlying molecular mechanisms and evolutionary stepsremain elusive, especially in nonmodel systems. Here, we utilized the natural history of invasive parasites to document the molecular underpinnings of co-evolutionary trajectories. We applied a dual-species transcriptomics approach to experimental cross-infections of blue mussel <i>Mytilus edulis</i> hosts and their invasive parasitic copepods <i>Mytilicola intestinalis</i> from two invasion fronts in the Wadden Sea. We identified differentially regulated genes from an experimental infection contrast for hosts (infected vs. control) and a sympatry contrast (sympatric vs. allopatric combinations)for both hosts and parasites. The damage incurred by <i>Mytilicola</i> infection and the following immune response of the host were mainly reflected in cell division processes,wound healing, apoptosis and the production of reactive oxygen species(ROS). Furthermore, the functional coupling of host and parasite sympatry contrasts revealed the concerted regulation of chitin digestion by a Chitotriosidase 1 homologin hosts with several cuticle proteins in the parasite. Together with the coupled regulation of ROS producers and antagonists, these genes represent candidates that mediate the different evolutionary trajectories within the parasite’s invasion. The host–parasite combination-specific coupling of these effector mechanisms suggests that underlying recognition mechanisms create specificity and local adaptation. In this way, our study demonstrates the use of invasive species’ natural history to elucidate molecular mechanisms of host–parasite co-evolution in the wild

    Effects of a Shortage of Imiglucerase on Three Patients with Type I Gaucher Disease

    Get PDF
    Background: Children with Gaucher disease type I (GD1) are usually treated with enzyme replacement therapy (ERT) at a dose of 30-60U/Kg/2W. Recently, due to an acute shortage supply of imiglucerase, a reduced dose or a reduced infusion frequency was recommended. Objective: To evaluate the effects of a reduced infusion frequency of imiglucerase over 15 months of follow-up. Patients and Methods: Three patients (1M:2F) were treated with ERT since a median age of 7 years (range 5-12). Only one had bone crisis and Erlenmeyer deformations. Median duration of treatment before dose reduction was 3 years (range 1-8). ERT resulted in total regression of symptoms, normalization of hematological parameters and progressive improvement of chitotriosidase in all patients. In August 2009 infusion schedule was changed from a media 45U/Kg every two weeks to every four weeks. Results: All patients remained asymptomatic and with no major change on hematological parameters except for the patient with bone crisis who presented subnormal platelet count. All patients showed an upward trend in chitotriosidase values. Comments: Although a longer follow-up is needed, is probable that even children completely stabilized can probably not be kept on lower doses even though the reduction of frequency of the infusions represent a lower social burden
    corecore