5,317 research outputs found

    Fast and Accurate Neural Word Segmentation for Chinese

    Full text link
    Neural models with minimal feature engineering have achieved competitive performance against traditional methods for the task of Chinese word segmentation. However, both training and working procedures of the current neural models are computationally inefficient. This paper presents a greedy neural word segmenter with balanced word and character embedding inputs to alleviate the existing drawbacks. Our segmenter is truly end-to-end, capable of performing segmentation much faster and even more accurate than state-of-the-art neural models on Chinese benchmark datasets.Comment: To appear in ACL201

    Bootstrapping word alignment via word packing

    Get PDF
    We introduce a simple method to pack words for statistical word alignment. Our goal is to simplify the task of automatic word alignment by packing several consecutive words together when we believe they correspond to a single word in the opposite language. This is done using the word aligner itself, i.e. by bootstrapping on its output. We evaluate the performance of our approach on a Chinese-to-English machine translation task, and report a 12.2% relative increase in BLEU score over a state-of-the art phrase-based SMT system

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    Natural Language Processing with Small Feed-Forward Networks

    Full text link
    We show that small and shallow feed-forward neural networks can achieve near state-of-the-art results on a range of unstructured and structured language processing tasks while being considerably cheaper in memory and computational requirements than deep recurrent models. Motivated by resource-constrained environments like mobile phones, we showcase simple techniques for obtaining such small neural network models, and investigate different tradeoffs when deciding how to allocate a small memory budget.Comment: EMNLP 2017 short pape

    Natural Language Processing Using Neighbour Entropy-based Segmentation

    Get PDF
    In natural language processing (NLP) of Chinese hazard text collected in the process of hazard identification, Chinese word segmentation (CWS) is the first step to extracting meaningful information from such semi-structured Chinese texts. This paper proposes a new neighbor entropy-based segmentation (NES) model for CWS. The model considers the segmentation benefits of neighbor entropies, adopting the concept of "neighbor" in optimization research. It is defined by the benefit ratio of text segmentation, including benefits and losses of combining the segmentation unit with more information than other popular statistical models. In the experiments performed, together with the maximum-based segmentation algorithm, the NES model achieves a 99.3% precision, 98.7% recall, and 99.0% f-measure for text segmentation; these performances are higher than those of existing tools based on other seven popular statistical models. Results show that the NES model is a valid CWS, especially for text segmentation requirements necessitating longer-sized characters. The text corpus used comes from the Beijing Municipal Administration of Work Safety, which was recorded in the fourth quarter of 2018

    Exploiting source similarity for SMT using context-informed features

    Get PDF
    In this paper, we introduce context informed features in a log-linear phrase-based SMT framework; these features enable us to exploit source similarity in addition to target similarity modeled by the language model. We present a memory-based classification framework that enables the estimation of these features while avoiding sparseness problems. We evaluate the performance of our approach on Italian-to-English and Chinese-to-English translation tasks using a state-of-the-art phrase-based SMT system, and report significant improvements for both BLEU and NIST scores when adding the context-informed features

    Neural Chinese Word Segmentation with Lexicon and Unlabeled Data via Posterior Regularization

    Full text link
    Existing methods for CWS usually rely on a large number of labeled sentences to train word segmentation models, which are expensive and time-consuming to annotate. Luckily, the unlabeled data is usually easy to collect and many high-quality Chinese lexicons are off-the-shelf, both of which can provide useful information for CWS. In this paper, we propose a neural approach for Chinese word segmentation which can exploit both lexicon and unlabeled data. Our approach is based on a variant of posterior regularization algorithm, and the unlabeled data and lexicon are incorporated into model training as indirect supervision by regularizing the prediction space of CWS models. Extensive experiments on multiple benchmark datasets in both in-domain and cross-domain scenarios validate the effectiveness of our approach.Comment: 7 pages, 11 figures, accepted by the 2019 World Wide Web Conference (WWW '19

    Exploiting alignment techniques in MATREX: the DCU machine translation system for IWSLT 2008

    Get PDF
    In this paper, we give a description of the machine translation (MT) system developed at DCU that was used for our third participation in the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT 2008). In this participation, we focus on various techniques for word and phrase alignment to improve system quality. Specifically, we try out our word packing and syntax-enhanced word alignment techniques for the Chinese–English task and for the English–Chinese task for the first time. For all translation tasks except Arabic–English, we exploit linguistically motivated bilingual phrase pairs extracted from parallel treebanks. We smooth our translation tables with out-of-domain word translations for the Arabic–English and Chinese–English tasks in order to solve the problem of the high number of out of vocabulary items. We also carried out experiments combining both in-domain and out-of-domain data to improve system performance and, finally, we deploy a majority voting procedure combining a language model based method and a translation-based method for case and punctuation restoration. We participated in all the translation tasks and translated both the single-best ASR hypotheses and the correct recognition results. The translation results confirm that our new word and phrase alignment techniques are often helpful in improving translation quality, and the data combination method we proposed can significantly improve system performance
    corecore