1,697,635 research outputs found
CHEMEPASS – Innovative Tools to promote Chemical Engineering Mobility
CHEMEPASS – Innovative Tools to promote Chemical Engineering Mobilit
Chemical Composition of Frozen Biofortified Pepper and Pumpkin
Practicability of the use of biofortified sweet pepper of Zoloto Skifov variety and pumpkins of Sviten variety for processing by freezing is proved. The test samples were grown using a liquid, organic, environmentally friendly fertilizers “Riverm” (control – vegetables that were grown using standard technology). Vegetables were frozen at –23 °C after preconditioning and packaging. Storage of finished products was at –18 °C for 6 months. The research found that during the freezing and storage of vegetables gradual loss of sugars is occurred. Biofortified frozen pepper at 6-th month of storage contains 87.9 % of total initial sugar, biofortified frozen pumpkin – 59.5 %.Test samples of peppers and pumpkins after storage are more valuable for the sugar content than the controls. Changes of pectin amount were observeded during the freezing and storage of samples. After 6 months their content increased by an average of 52 % of the original content in the used raw materials. Tissue content immediately after freezing peppers and pumpkins also increased on average by 61 %, but after 3 months of storage began to decline and these changes lasted until the end of life. Freezing had an impact on the amount of hemicellulose in frozen vegetables. After 6 months of storage biofortified vegetables contained an average of 58.1 % of hemicellulose in comparison with its original content. During the freezing and storage of test and control samples of peppers and pumpkins, there is a general pattern of change in the content of sugars and polysaccharides, but after 6 months of storage the most valuable are biofortified vegetables. This is due to the high nutritional value of fresh biofortified vegetables that were used for processing
Cheminanotechnology: Nanotechnology for Chemistry and Chemical Engineering
No abstract availabl
Design acceleration in chemical engineering
Nowadays, Chemical Engineering has to face a new industrial context with for example: the gradually falling of hydrocarbon reserves after 2020-2030, relocation, emerging of new domains of application (nano-micro technologies) which necessitate new solutions and knowledges… All this tendencies and demands accelerate the need of tool for design and innovation (technically, technologically). In this context, this paper presents a tool to accelerate innovative preliminary design. This model is based on the synergy between: TRIZ (Russian acronym for Theory of Inventive Problem Solving) and Case Based Reasoning (CBR). The proposed model offers a structure to solve problem, and also to store and make available past experiences in problems solving. A tool dedicated to chemical engineering problems, is created on this model and a simple example is treated to explain the possibilities of this tool
- …
