38 research outputs found

    Energy-Efficient System Architectures for Intermittently-Powered IoT Devices

    Get PDF
    Various industry forecasts project that, by 2020, there will be around 50 billion devices connected to the Internet of Things (IoT), helping to engineer new solutions to societal-scale problems such as healthcare, energy conservation, transportation, etc. Most of these devices will be wireless due to the expense, inconvenience, or in some cases, the sheer infeasibility of wiring them. With no cord for power and limited space for a battery, powering these devices for operating in a set-and-forget mode (i.e., achieve several months to possibly years of unattended operation) becomes a daunting challenge. Environmental energy harvesting (where the system powers itself using energy that it scavenges from its operating environment) has been shown to be a promising and viable option for powering these IoT devices. However, ambient energy sources (such as vibration, wind, RF signals) are often minuscule, unreliable, and intermittent in nature, which can lead to frequent intervals of power loss. Performing computations reliably in the face of such power supply interruptions is challenging

    An Efficient NVM based Architecture for Intermittent Computing under Energy Constraints

    Full text link
    Battery-less technology evolved to replace battery technology. Non-volatile memory (NVM) based processors were explored to store the program state during a power failure. The energy stored in a capacitor is used for a backup during a power failure. Since the size of a capacitor is fixed and limited, the available energy in a capacitor is also limited and fixed. Thus, the capacitor energy is insufficient to store the entire program state during frequent power failures. This paper proposes an architecture that assures safe backup of volatile contents during a power failure under energy constraints. Using a proposed dirty block table (DBT) and writeback queue (WBQ), this work limits the number of dirty blocks in the L1 cache at any given time. We further conducted a set of experiments by varying the parameter sizes to help the user make appropriate design decisions concerning their energy requirements. The proposed architecture decreases energy consumption by 17.56%, the number of writes to NVM by 18.97% at LLC, and 10.66% at a main-memory level compared to baseline architecture

    Efficient Placement and Migration Policies for an STT-RAM based Hybrid L1 Cache for Intermittently Powered Systems

    Full text link
    The number of battery-powered devices is rapidly increasing due to the widespread use of IoT-enabled nodes in various fields. Energy harvesters, which help to power embedded devices, are a feasible alternative to replacing battery-powered devices. In a capacitor, the energy harvester stores enough energy to power up the embedded device and compute the task. This type of computation is referred to as intermittent computing. Energy harvesters are unable to supply continuous power to embedded devices. All registers and cache in conventional processors are volatile. We require a Non-Volatile Memory (NVM)-based Non-Volatile Processor (NVP) that can store registers and cache contents during a power failure. NVM-based caches reduce system performance and consume more energy than SRAM-based caches. This paper proposes Efficient Placement and Migration policies for hybrid cache architecture that uses SRAM and STT-RAM at the first level cache. The proposed architecture includes cache block placement and migration policies to reduce the number of writes to STT-RAM. During a power failure, the backup strategy identifies and migrates the critical blocks from SRAM to STT-RAM. When compared to the baseline architecture, the proposed architecture reduces STT-RAM writes from 63.35% to 35.93%, resulting in a 32.85% performance gain and a 23.42% reduction in energy consumption. Our backup strategy reduces backup time by 34.46% when compared to the baseline

    Optimized Multi-input Single-output Energy Harvesting System

    Get PDF
    The energy harvesting sources has been introduced as a promising alternative for battery power. However, harvested energy is inherently sporadic, unstable, and unreliable. For this reason, a non-volatile processor has been previously proposed to bridge the intermittent executions in frequent power losses. Nonetheless, recurrent power failures reduce overall system performance which has forced researchers to look into multi-input energy harvesting systems. The purpose of this study is to investigate the possible solutions to improve the reliability and functionality of battery-less devices. This study has two major objectives: (1) implementing periodic checkpointing on WISP5, and (2) proposing optimized multi-input single-output energy harvesting system. The WISP5 was acquired from the Sensor Systems Laboratory, University of Washington, as a viable RFID energy harvesting system to implement software checkpointing techniques. We performed the periodic checkpointing every 50ms based on the RFID power fluctuation style. Then, we explored a number of possible maximum power point tracking techniques to extract maximum power from harvesters. As a result, we verified that the open circuit voltage control is the most cost effective and efficient technique for both thermoelectric (TEG) and photovoltaic (PV) . Also, we revealed that in low-level input voltages, following the fact that the maximum power extraction can be achieved at half of open circuit voltage does not result in maximum possible efficiency. Therefore, by adjusting the converter input voltage at about 66% of open circuit voltage, we improved power efficiency by about 18%.Electrical Engineerin

    Enabling Reliable, Efficient, and Secure Computing for Energy Harvesting Powered IoT Devices

    Get PDF
    Energy harvesting is one of the most promising techniques to power devices for future generation IoT. While energy harvesting does not have longevity, safety, and recharging concerns like traditional batteries, its instability brings a new challenge to the embedded systems: the energy harvested from environment is usually weak and intermittent. With traditional CMOS based technology, whenever the power is off, the computation has to start from the very beginning. Compared with existing CMOS based memory devices, emerging non-volatile memory devices such as PCM and STT-RAM, have the benefits of sustaining the data even when there is no power. By checkpointing the processor's volatile state to non-volatile memory, a program can resume its execution immediately after power comes back on again instead of restarting from the very beginning with checkpointing techniques. However, checkpointing is not sufficient for energy harvesting systems. First, the program execution resumed from the last checkpoint might not execute correctly and causes inconsistency problem to the system. This problem is due to the inconsistency between volatile system state and non-volatile system state during checkpointing. Second, the process of checkpointing consumes a considerable amount of energy and time due to the slow and energy-consuming write operation of non-volatile memory. Finally, connecting to the internet poses many security issues to energy harvesting IoT devices. Traditional data encryption methods are both energy and time consuming which do not fit the resource constrained IoT devices. Therefore, a light-weight encryption method is in urgent need for securing IoT devices. Targeting those three challenges, this dissertation proposes three techniques to enable reliable, efficient, and secure computing in energy harvesting IoT devices. First, a consistency-aware checkpointing technique is proposed to avoid inconsistency errors generated from the inconsistency between volatile state and non-volatile state. Second, checkpoint aware hybrid cache architecture is proposed to guarantee reliable checkpointing while maintaining a low checkpointing overhead from cache. Finally, to ensure the security of energy harvesting IoT devices, an energy-efficient in-memory encryption implementation for protecting the IoT device is proposed which can quickly encrypts the data in non-volatile memory and protect the embedded system physical and on-line attacks

    Sytare: a Lightweight Kernel for NVRAM-Based Transiently-Powered Systems

    Get PDF
    International audienceIn a near future, energy harvesting is expected to replace batteries in ultra-low-power embedded systems. Research prototypes of such systems have recently been proposed. As the power harvested in the environment is very low, such systems need to cope with frequent power outages. They are referred to as transiently-powered systems (TPS). In order to execute non-trivial applications, TPS need to retain information between power losses. To achieve this goal, emerging non-volatile memory (NVM) technologies are a key enabler: they provide a lightweight solution to retain, between power outages, the state of an application and of its peripheral devices. These include sensors, serial interface or radio devices for instance. Existing works have described various checkpointing mechanisms to adapt embedded applications to TPS but the use of peripherals was not yet handled. in these works. This paper proposes a solution for embedded applications using any peripheral device to run despite transient power. We follow a kernel-oriented approach resulting in minimal impact on the programming model of the application. We implement the new concepts in our lightweight kernel called Sytare, running on an MSP430FR5739 micro-controller and we analyze the cost of the proposed solution

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ

    Scheduling Tasks on Intermittently-Powered Real-Time Systems

    Get PDF
    Batteryless systems go through sporadic power on and off phases due to intermittently available energy; thus, they are called intermittent systems. Unfortunately, this intermittence in power supply hinders the timely execution of tasks and limits such devicesโ€™ potential in certain application domains, e.g., healthcare, live-stock tracking. Unlike prior work on time-aware intermittent systems that focuses on timekeeping [1, 2, 3] and discarding expired data [4], this dissertation concentrates on finishing task execution on time. I leverage the data processing and control layer of batteryless systems by developing frameworks that (1) integrate energy harvesting and real-time systems, (2) rethink machine learning algorithms for an energy-aware imprecise task scheduling framework, (3) develop scheduling algorithms that, along with deciding what to compute, answers when to compute and when to harvest, and (4) utilize distributed systems that collaboratively emulate a persistently powered system. Scheduling Framework for Intermittently Powered Computing Systems. Batteryless systems rely on sporadically available harvestable energy. For example, kinetic-powered motion detector sensors on the impalas can only harvest energy when the impalas are moving, which cannot be ascertained in advance. This uncertainty poses a unique real-time scheduling problem where existing real-time algorithms fail due to the interruption in execution time. This dissertation proposes a unified scheduling framework that includes both harvesting and computing. Imprecise Deep Neural Network Inference in Deadline-Aware Intermittent Systems. This dissertation proposes Zygarde- an energy-aware and outcome-aware soft-real-time imprecise deep neural network (DNN) task scheduling framework for intermittent systems. Zygarde leverages the semantic diversity of input data and layer-dependent expressiveness of deep features and infers only the necessary DNN layers based on available time and energy. Zygarde proposes a novel technique to determine the imprecise boundary at the runtime by exploiting the clustering classifiers and specialized offline training of the DNNs to minimize the loss of accuracy due to partial execution. It also proposes a single metric, ฮท to represent a systemโ€™s predictability that measures how close a harvesterรขs harvesting pattern is to a constant energy source. Besides, Zygarde consists of a scheduling algorithm that takes available time, available energy, impreciseness, and the classifier's performance into account. Scheduling Mutually Exclusive Computing and Harvesting Tasks in Deadline-Aware Intermittent Systems. The lack of sufficient ambient energy to directly power the intermittent systems introduces mutually exclusive computing and charging cycles of intermittently powered systems. This introduces a challenging real-time scheduling problem where the existing real-time algorithms fail due to the lack of interruption in execution time. To address this, this dissertation proposes Celebi, which considers the dynamics of the available energy and schedules when to harvest and when to compute in batteryless systems. Using data-driven simulation and real-world experiments, this dissertation shows that Celebi significantly increases the number of tasks that complete execution before their deadline when power was only available intermittently. Persistent System Emulation with Distributed Intermittent System. Intermittently-powered sensing and computing systems go through sporadic power-on and off periods due to the uncertain availability of energy sources. Despite the recent efforts to advance time-sensitive intermittent systems, such systems fail to capture important target events when the energy is absent for a prolonged time. This event miss limits the potential usage of intermittent systems in fault- intolerant and safety-critical applications. To address this problem, this dissertation proposes Falinks, a framework that allows a swarm of distributed intermittently powered nodes to collaboratively imitate the sensing and computing capabilities of a persistently powered system. This framework provides power-on and off schedules for the swamp of intermittent nodes which has no communication capability with each other.Doctor of Philosoph

    GPU ์—๋Ÿฌ ์•ˆ์ •์„ฑ ๋ณด์žฅ์„ ์œ„ํ•œ ์ปดํŒŒ์ผ๋Ÿฌ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2020. 8. ์ด์žฌ์ง„.Due to semiconductor technology scaling and near-threshold voltage computing, soft error resilience has become more important. Nowadays, GPUs are widely used in high performance computing (HPC) because of its efficient parallel processing and modern GPUs designed for HPC use error correction code (ECC) to protect their storage including register files. However, adopting ECC in the register file imposes high area and energy overhead. To replace the expensive hardware cost of ECC, we propose Penny, a lightweight compiler-directed resilience scheme for GPU register file protection. We combine recent advances in idempotent recovery with low-cost error detection code. Our approach focuses on solving two important problems: 1. Can we guarantee correct error recovery using idempotent execution with error detection code? We show that when an error detection code is used with idempotence recovery, certain restrictions required by previous idempotent recovery schemes are no longer needed. We also propose a software-based scheme to prevent the checkpoint value from being overwritten before the end of the region where the value is required for correct recovery. 2. How do we reduce the execution overhead caused by checkpointing? In GPUs additional checkpointing store instructions inflicts considerably higher overhead compared to CPUs, due to its architectural characteristics, such as lack of store buffers. We propose a number of compiler optimizations techniques that significantly reduce the overhead.๋ฐ˜๋„์ฒด ๋ฏธ์„ธ๊ณต์ • ๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•˜๊ณ  ๋ฌธํ„ฑ์ „์•• ๊ทผ์ฒ˜ ์ปดํ“จํŒ…(near-threashold voltage computing)์ด ๋„์ž…๋จ์— ๋”ฐ๋ผ์„œ ์†Œํ”„ํŠธ ์—๋Ÿฌ๋กœ๋ถ€ํ„ฐ์˜ ๋ณต์›์ด ์ค‘์š”ํ•œ ๊ณผ์ œ๊ฐ€ ๋˜์—ˆ๋‹ค. ๊ฐ•๋ ฅํ•œ ๋ณ‘๋ ฌ ๊ณ„์‚ฐ ์„ฑ๋Šฅ์„ ์ง€๋‹Œ GPU๋Š” ๊ณ ์„ฑ๋Šฅ ์ปดํ“จํŒ…์—์„œ ์ค‘์š”ํ•œ ์œ„์น˜๋ฅผ ์ฐจ์ง€ํ•˜๊ฒŒ ๋˜์—ˆ๊ณ , ์Šˆํผ ์ปดํ“จํ„ฐ์—์„œ ์“ฐ์ด๋Š” GPU๋“ค์€ ์—๋Ÿฌ ๋ณต์› ์ฝ”๋“œ์ธ ECC๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ ˆ์ง€์Šคํ„ฐ ํŒŒ์ผ ๋ฐ ๋ฉ”๋ชจ๋ฆฌ ๋“ฑ์— ์ €์žฅ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณดํ˜ธํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋ ˆ์ง€์Šคํ„ฐ ํŒŒ์ผ์— ECC๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์€ ํฐ ํ•˜๋“œ์›จ์–ด๋‚˜ ์—๋„ˆ์ง€ ๋น„์šฉ์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ์ด๋Ÿฐ ๊ฐ’๋น„์‹ผ ECC์˜ ํ•˜๋“œ์›จ์–ด ๋น„์šฉ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ปดํŒŒ์ผ๋Ÿฌ ๊ธฐ๋ฐ˜์˜ ์ €๋น„์šฉ GPU ๋ ˆ์ง€์Šคํ„ฐ ํŒŒ์ผ ๋ณต์› ๊ธฐ๋ฒ•์ธ Penny๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋Š” ์ตœ์‹ ์˜ ๋ฉฑ๋“ฑ์„ฑ(idempotency) ๊ธฐ๋ฐ˜ ์—๋Ÿฌ ๋ณต์› ๊ธฐ๋ฒ•์„ ์ €๋น„์šฉ์˜ ์—๋Ÿฌ ๊ฒ€์ถœ ์ฝ”๋“œ(EDC)์™€ ๊ฒฐํ•ฉํ•œ ๊ฒƒ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์Œ ๋‘๊ฐ€์ง€ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ์— ์ง‘์ค‘ํ•œ๋‹ค. 1. ์—๋Ÿฌ ๊ฒ€์ถœ ์ฝ”๋“œ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฉฑ๋“ฑ์„ฑ ๊ธฐ๋ฐ˜ ์—๋Ÿฌ ๋ณต์›์„ ์‚ฌ์šฉ์‹œ ์†Œํ”„ํŠธ ์—๋Ÿฌ๋กœ๋ถ€ํ„ฐ์˜ ์•ˆ์ „ํ•œ ๋ณต์›์„ ๋ณด์žฅํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€?} ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์—๋Ÿฌ ๊ฒ€์ถœ ์ฝ”๋“œ๊ฐ€ ๋ฉฑ๋“ฑ์„ฑ ๊ธฐ๋ฐ˜ ๋ณต์› ๊ธฐ์ˆ ๊ณผ ๊ฐ™์ด ์‚ฌ์šฉ๋˜์—ˆ์„ ๊ฒฝ์šฐ ๊ธฐ์กด์˜ ๋ณต์› ๊ธฐ๋ฒ•์—์„œ ํ•„์š”๋กœ ํ–ˆ๋˜ ์กฐ๊ฑด๋“ค ์—†์ด๋„ ์•ˆ์ „ํ•˜๊ฒŒ ์—๋Ÿฌ๋กœ๋ถ€ํ„ฐ ๋ณต์›ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. 2. ์ฒดํฌํฌ์ธํŒ…์—๋“œ๋Š” ๋น„์šฉ์„ ์–ด๋–ป๊ฒŒ ์ ˆ๊ฐํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€?} GPU๋Š” ์Šคํ† ์–ด ๋ฒ„ํผ๊ฐ€ ์—†๋Š” ๋“ฑ ์•„ํ‚คํ…์ณ์ ์ธ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด์„œ CPU์™€ ๋น„๊ตํ•˜์—ฌ ์ฒดํฌํฌ์ธํŠธ ๊ฐ’์„ ์ €์žฅํ•˜๋Š” ๋ฐ์— ํฐ ์˜ค๋ฒ„ํ—ค๋“œ๊ฐ€ ๋“ ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ํ†ตํ•˜์—ฌ ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ์ค„์ธ๋‹ค.1 Introduction 1 1.1 Why is Soft Error Resilience Important in GPUs 1 1.2 How can the ECC Overhead be Reduced 3 1.3 What are the Challenges 4 1.4 How do We Solve the Challenges 5 2 Comparison of Error Detection and Correction Coding Schemes for Register File Protection 7 2.1 Error Correction Codes and Error Detection Codes 8 2.2 Cost of Coding Schemes 9 2.3 Soft Error Frequency of GPUs 11 3 Idempotent Recovery and Challenges 13 3.1 Idempotent Execution 13 3.2 Previous Idempotent Schemes 13 3.2.1 De Kruijf's Idempotent Translation 14 3.2.2 Bolts's Idempotent Recovery 15 3.2.3 Comparison between Idempotent Schemes 15 3.3 Idempotent Recovery Process 17 3.4 Idempotent Recovery Challenges for GPUs 18 3.4.1 Checkpoint Overwriting 20 3.4.2 Performance Overhead 20 4 Correctness of Recovery 22 4.1 Proof of Safe Recovery 23 4.1.1 Prevention of Error Propagation 23 4.1.2 Proof of Correct State Recovery 24 4.1.3 Correctness in Multi-Threaded Execution 28 4.2 Preventing Checkpoint Overwriting 30 4.2.1 Register renaming 31 4.2.2 Storage Alternation by Checkpoint Coloring 33 4.2.3 Automatic Algorithm Selection 38 4.2.4 Future Works 38 5 Performance Optimizations 40 5.1 Compilation Phases of Penny 40 5.1.1 Region Formation 41 5.1.2 Bimodal Checkpoint Placement 41 5.1.3 Storage Alternation 42 5.1.4 Checkpoint Pruning 43 5.1.5 Storage Assignment 44 5.1.6 Code Generation and Low-level Optimizations 45 5.2 Cost Estimation Model 45 5.3 Region Formation 46 5.3.1 De Kruijf's Heuristic Region Formation 46 5.3.2 Region splitting and Region Stitching 47 5.3.3 Checkpoint-Cost Aware Optimal Region Formation 48 5.4 Bimodal Checkpoint Placement 52 5.5 Optimal Checkpoint Pruning 55 5.5.1 Bolt's Naive Pruning Algorithm and Overview of Penny's Optimal Pruning Algorithm 55 5.5.2 Phase 1: Collecting Global-Decision Independent Status 56 5.5.3 Phase2: Ordering and Finalizing Renaming Decisions 60 5.5.4 Effectiveness of Eliminating the Checkpoints 63 5.6 Automatic Checkpoint Storage Assignment 69 5.7 Low-Level Optimizations and Code Generation 70 6 Evaluation 74 6.1 Test Environment 74 6.1.1 GPU Architecture and Simulation Setup 74 6.1.2 Tested Applications 75 6.1.3 Register Assignment 76 6.2 Performance Evaluation 77 6.2.1 Overall Performance Overheads 77 6.2.2 Impact of Penny's Optimizations 78 6.2.3 Assigning Checkpoint Storage and Its Integrity 79 6.2.4 Impact of Optimal Checkpoint Pruning 80 6.2.5 Impact of Alias Analysis 81 6.3 Repurposing the Saved ECC Area 82 6.4 Energy Impact on Execution 83 6.5 Performance Overhead on Volta Architecture 85 6.6 Compilation Time 85 7 RelatedWorks 87 8 Conclusion and Future Works 89 8.1 Limitation and Future Work 90Docto
    corecore