248,177 research outputs found
Chromosome breakage after G2 checkpoint release
DNA double-strand break (DSB) repair and checkpoint control represent distinct mechanisms to reduce chromosomal instability. Ataxia telangiectasia (A-T) cells have checkpoint arrest and DSB repair defects. We examine the efficiency and interplay of ATM's G2 checkpoint and repair functions. Artemis cells manifest a repair defect identical and epistatic to A-T but show proficient checkpoint responses. Only a few G2 cells enter mitosis within 4 h after irradiation with 1 Gy but manifest multiple chromosome breaks. Most checkpoint-proficient cells arrest at the G2/M checkpoint, with the length of arrest being dependent on the repair capacity. Strikingly, cells released from checkpoint arrest display one to two chromosome breaks. This represents a major contribution to chromosome breakage. The presence of chromosome breaks in cells released from checkpoint arrest suggests that release occurs before the completion of DSB repair. Strikingly, we show that checkpoint release occurs at a point when approximately three to four premature chromosome condensation breaks and approximately 20 gammaH2AX foci remain
TRIP13PCH-2 promotes Mad2 localization to unattached kinetochores in the spindle checkpoint response.
The spindle checkpoint acts during cell division to prevent aneuploidy, a hallmark of cancer. During checkpoint activation, Mad1 recruits Mad2 to kinetochores to generate a signal that delays anaphase onset. Yet, whether additional factors contribute to Mad2's kinetochore localization remains unclear. Here, we report that the conserved AAA+ ATPase TRIP13(PCH-2) localizes to unattached kinetochores and is required for spindle checkpoint activation in Caenorhabditis elegans. pch-2 mutants effectively localized Mad1 to unattached kinetochores, but Mad2 recruitment was significantly reduced. Furthermore, we show that the C. elegans orthologue of the Mad2 inhibitor p31(comet)(CMT-1) interacts with TRIP13(PCH-2) and is required for its localization to unattached kinetochores. These factors also genetically interact, as loss of p31(comet)(CMT-1) partially suppressed the requirement for TRIP13(PCH-2) in Mad2 localization and spindle checkpoint signaling. These data support a model in which the ability of TRIP13(PCH-2) to disassemble a p31(comet)/Mad2 complex, which has been well characterized in the context of checkpoint silencing, is also critical for spindle checkpoint activation
The Rad4TopBP1 ATR-Activation domain functions in G1/S phase in a chromatin-dependent manner
DNA damage checkpoint activation can be subdivided in two steps: initial activation and signal amplification. The events
distinguishing these two phases and their genetic determinants remain obscure. TopBP1, a mediator protein containing
multiple BRCT domains, binds to and activates the ATR/ATRIP complex through its ATR-Activation Domain (AAD). We show
that Schizosaccharomyces pombe Rad4TopBP1 AAD–defective strains are DNA damage sensitive during G1/S-phase, but not
during G2. Using lacO-LacI tethering, we developed a DNA damage–independent assay for checkpoint activation that is
Rad4TopBP1 AAD–dependent. In this assay, checkpoint activation requires histone H2A phosphorylation, the interaction
between TopBP1 and the 9-1-1 complex, and is mediated by the phospho-binding activity of Crb253BP1. Consistent with a
model where Rad4TopBP1 AAD–dependent checkpoint activation is ssDNA/RPA–independent and functions to amplify
otherwise weak checkpoint signals, we demonstrate that the Rad4TopBP1 AAD is important for Chk1 phosphorylation when
resection is limited in G2 by ablation of the resecting nuclease, Exo1. We also show that the Rad4TopBP1 AAD acts additively
with a Rad9 AAD in G1/S phase but not G2. We propose that AAD–dependent Rad3ATR checkpoint amplification is
particularly important when DNA resection is limiting. In S. pombe, this manifests in G1/S phase and relies on protein–
chromatin interactions
TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching.
The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active 'closed' conformer to an inactive 'open' conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination
A Generic Checkpoint-Restart Mechanism for Virtual Machines
It is common today to deploy complex software inside a virtual machine (VM).
Snapshots provide rapid deployment, migration between hosts, dependability
(fault tolerance), and security (insulating a guest VM from the host). Yet, for
each virtual machine, the code for snapshots is laboriously developed on a
per-VM basis. This work demonstrates a generic checkpoint-restart mechanism for
virtual machines. The mechanism is based on a plugin on top of an unmodified
user-space checkpoint-restart package, DMTCP. Checkpoint-restart is
demonstrated for three virtual machines: Lguest, user-space QEMU, and KVM/QEMU.
The plugins for Lguest and KVM/QEMU require just 200 lines of code. The Lguest
kernel driver API is augmented by 40 lines of code. DMTCP checkpoints
user-space QEMU without any new code. KVM/QEMU, user-space QEMU, and DMTCP need
no modification. The design benefits from other DMTCP features and plugins.
Experiments demonstrate checkpoint and restart in 0.2 seconds using forked
checkpointing, mmap-based fast-restart, and incremental Btrfs-based snapshots
- …
