203,752 research outputs found

    Lidar-based Gait Analysis and Activity Recognition in a 4D Surveillance System

    Get PDF
    This paper presents new approaches for gait and activity analysis based on data streams of a Rotating Multi Beam (RMB) Lidar sensor. The proposed algorithms are embedded into an integrated 4D vision and visualization system, which is able to analyze and interactively display real scenarios in natural outdoor environments with walking pedestrians. The main focus of the investigations are gait based person re-identification during tracking, and recognition of specific activity patterns such as bending, waving, making phone calls and checking the time looking at wristwatches. The descriptors for training and recognition are observed and extracted from realistic outdoor surveillance scenarios, where multiple pedestrians are walking in the field of interest following possibly intersecting trajectories, thus the observations might often be affected by occlusions or background noise. Since there is no public database available for such scenarios, we created and published a new Lidar-based outdoors gait and activity dataset on our website, that contains point cloud sequences of 28 different persons extracted and aggregated from 35 minutes-long measurements. The presented results confirm that both efficient gait-based identification and activity recognition is achievable in the sparse point clouds of a single RMB Lidar sensor. After extracting the people trajectories, we synthesized a free-viewpoint video, where moving avatar models follow the trajectories of the observed pedestrians in real time, ensuring that the leg movements of the animated avatars are synchronized with the real gait cycles observed in the Lidar stream

    Multi-label Class-imbalanced Action Recognition in Hockey Videos via 3D Convolutional Neural Networks

    Get PDF
    Automatic analysis of the video is one of most complex problems in the fields of computer vision and machine learning. A significant part of this research deals with (human) activity recognition (HAR) since humans, and the activities that they perform, generate most of the video semantics. Video-based HAR has applications in various domains, but one of the most important and challenging is HAR in sports videos. Some of the major issues include high inter- and intra-class variations, large class imbalance, the presence of both group actions and single player actions, and recognizing simultaneous actions, i.e., the multi-label learning problem. Keeping in mind these challenges and the recent success of CNNs in solving various computer vision problems, in this work, we implement a 3D CNN based multi-label deep HAR system for multi-label class-imbalanced action recognition in hockey videos. We test our system for two different scenarios: an ensemble of kk binary networks vs. a single kk-output network, on a publicly available dataset. We also compare our results with the system that was originally designed for the chosen dataset. Experimental results show that the proposed approach performs better than the existing solution.Comment: Accepted to IEEE/ACIS SNPD 2018, 6 pages, 3 figure

    Log-based Evaluation of Label Splits for Process Models

    Get PDF
    Process mining techniques aim to extract insights in processes from event logs. One of the challenges in process mining is identifying interesting and meaningful event labels that contribute to a better understanding of the process. Our application area is mining data from smart homes for elderly, where the ultimate goal is to signal deviations from usual behavior and provide timely recommendations in order to extend the period of independent living. Extracting individual process models showing user behavior is an important instrument in achieving this goal. However, the interpretation of sensor data at an appropriate abstraction level is not straightforward. For example, a motion sensor in a bedroom can be triggered by tossing and turning in bed or by getting up. We try to derive the actual activity depending on the context (time, previous events, etc.). In this paper we introduce the notion of label refinements, which links more abstract event descriptions with their more refined counterparts. We present a statistical evaluation method to determine the usefulness of a label refinement for a given event log from a process perspective. Based on data from smart homes, we show how our statistical evaluation method for label refinements can be used in practice. Our method was able to select two label refinements out of a set of candidate label refinements that both had a positive effect on model precision.Comment: Paper accepted at the 20th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, to appear in Procedia Computer Scienc

    Heuristic Approaches for Generating Local Process Models through Log Projections

    Full text link
    Local Process Model (LPM) discovery is focused on the mining of a set of process models where each model describes the behavior represented in the event log only partially, i.e. subsets of possible events are taken into account to create so-called local process models. Often such smaller models provide valuable insights into the behavior of the process, especially when no adequate and comprehensible single overall process model exists that is able to describe the traces of the process from start to end. The practical application of LPM discovery is however hindered by computational issues in the case of logs with many activities (problems may already occur when there are more than 17 unique activities). In this paper, we explore three heuristics to discover subsets of activities that lead to useful log projections with the goal of speeding up LPM discovery considerably while still finding high-quality LPMs. We found that a Markov clustering approach to create projection sets results in the largest improvement of execution time, with discovered LPMs still being better than with the use of randomly generated activity sets of the same size. Another heuristic, based on log entropy, yields a more moderate speedup, but enables the discovery of higher quality LPMs. The third heuristic, based on the relative information gain, shows unstable performance: for some data sets the speedup and LPM quality are higher than with the log entropy based method, while for other data sets there is no speedup at all.Comment: paper accepted and to appear in the proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM), special session on Process Mining, part of the Symposium Series on Computational Intelligence (SSCI
    corecore