340 research outputs found

    Chasing diagrams in cryptography

    Full text link
    Cryptography is a theory of secret functions. Category theory is a general theory of functions. Cryptography has reached a stage where its structures often take several pages to define, and its formulas sometimes run from page to page. Category theory has some complicated definitions as well, but one of its specialties is taming the flood of structure. Cryptography seems to be in need of high level methods, whereas category theory always needs concrete applications. So why is there no categorical cryptography? One reason may be that the foundations of modern cryptography are built from probabilistic polynomial-time Turing machines, and category theory does not have a good handle on such things. On the other hand, such foundational problems might be the very reason why cryptographic constructions often resemble low level machine programming. I present some preliminary explorations towards categorical cryptography. It turns out that some of the main security concepts are easily characterized through the categorical technique of *diagram chasing*, which was first used Lambek's seminal `Lecture Notes on Rings and Modules'.Comment: 17 pages, 4 figures; to appear in: 'Categories in Logic, Language and Physics. Festschrift on the occasion of Jim Lambek's 90th birthday', Claudia Casadio, Bob Coecke, Michael Moortgat, and Philip Scott (editors); this version: fixed typos found by kind reader

    Actor-network procedures: Modeling multi-factor authentication, device pairing, social interactions

    Full text link
    As computation spreads from computers to networks of computers, and migrates into cyberspace, it ceases to be globally programmable, but it remains programmable indirectly: network computations cannot be controlled, but they can be steered by local constraints on network nodes. The tasks of "programming" global behaviors through local constraints belong to the area of security. The "program particles" that assure that a system of local interactions leads towards some desired global goals are called security protocols. As computation spreads beyond cyberspace, into physical and social spaces, new security tasks and problems arise. As networks are extended by physical sensors and controllers, including the humans, and interlaced with social networks, the engineering concepts and techniques of computer security blend with the social processes of security. These new connectors for computational and social software require a new "discipline of programming" of global behaviors through local constraints. Since the new discipline seems to be emerging from a combination of established models of security protocols with older methods of procedural programming, we use the name procedures for these new connectors, that generalize protocols. In the present paper we propose actor-networks as a formal model of computation in heterogenous networks of computers, humans and their devices; and we introduce Procedure Derivation Logic (PDL) as a framework for reasoning about security in actor-networks. On the way, we survey the guiding ideas of Protocol Derivation Logic (also PDL) that evolved through our work in security in last 10 years. Both formalisms are geared towards graphic reasoning and tool support. We illustrate their workings by analysing a popular form of two-factor authentication, and a multi-channel device pairing procedure, devised for this occasion.Comment: 32 pages, 12 figures, 3 tables; journal submission; extended references, added discussio

    Monoidal computer III: A coalgebraic view of computability and complexity

    Full text link
    Monoidal computer is a categorical model of intensional computation, where many different programs correspond to the same input-output behavior. The upshot of yet another model of computation is that a categorical formalism should provide a much needed high level language for theory of computation, flexible enough to allow abstracting away the low level implementation details when they are irrelevant, or taking them into account when they are genuinely needed. A salient feature of the approach through monoidal categories is the formal graphical language of string diagrams, which supports visual reasoning about programs and computations. In the present paper, we provide a coalgebraic characterization of monoidal computer. It turns out that the availability of interpreters and specializers, that make a monoidal category into a monoidal computer, is equivalent with the existence of a *universal state space*, that carries a weakly final state machine for any pair of input and output types. Being able to program state machines in monoidal computers allows us to represent Turing machines, to capture their execution, count their steps, as well as, e.g., the memory cells that they use. The coalgebraic view of monoidal computer thus provides a convenient diagrammatic language for studying computability and complexity.Comment: 34 pages, 24 figures; in this version: added the Appendi

    Gaming security by obscurity

    Get PDF
    Shannon sought security against the attacker with unlimited computational powers: *if an information source conveys some information, then Shannon's attacker will surely extract that information*. Diffie and Hellman refined Shannon's attacker model by taking into account the fact that the real attackers are computationally limited. This idea became one of the greatest new paradigms in computer science, and led to modern cryptography. Shannon also sought security against the attacker with unlimited logical and observational powers, expressed through the maxim that "the enemy knows the system". This view is still endorsed in cryptography. The popular formulation, going back to Kerckhoffs, is that "there is no security by obscurity", meaning that the algorithms cannot be kept obscured from the attacker, and that security should only rely upon the secret keys. In fact, modern cryptography goes even further than Shannon or Kerckhoffs in tacitly assuming that *if there is an algorithm that can break the system, then the attacker will surely find that algorithm*. The attacker is not viewed as an omnipotent computer any more, but he is still construed as an omnipotent programmer. So the Diffie-Hellman step from unlimited to limited computational powers has not been extended into a step from unlimited to limited logical or programming powers. Is the assumption that all feasible algorithms will eventually be discovered and implemented really different from the assumption that everything that is computable will eventually be computed? The present paper explores some ways to refine the current models of the attacker, and of the defender, by taking into account their limited logical and programming powers. If the adaptive attacker actively queries the system to seek out its vulnerabilities, can the system gain some security by actively learning attacker's methods, and adapting to them?Comment: 15 pages, 9 figures, 2 tables; final version appeared in the Proceedings of New Security Paradigms Workshop 2011 (ACM 2011); typos correcte

    Braids: A Survey

    Full text link
    This article is about Artin's braid group and its role in knot theory. We set ourselves two goals: (i) to provide enough of the essential background so that our review would be accessible to graduate students, and (ii) to focus on those parts of the subject in which major progress was made, or interesting new proofs of known results were discovered, during the past 20 years. A central theme that we try to develop is to show ways in which structure first discovered in the braid groups generalizes to structure in Garside groups, Artin groups and surface mapping class groups. However, the literature is extensive, and for reasons of space our coverage necessarily omits many very interesting developments. Open problems are noted and so-labelled, as we encounter them.Comment: Final version, revised to take account of the comments of readers. A review article, to appear in the Handbook of Knot Theory, edited by W. Menasco and M. Thistlethwaite. 91 pages, 24 figure

    Logic of fusion

    Full text link
    The starting point of this work is the observation that the Curry-Howard isomorphism, relating types and propositions, programs and proofs, composition and cut, extends to the correspondence of program fusion and cut elimination. This simple idea suggests logical interpretations of some of the basic methods of generic and transformational programming. In the present paper, we provide a logical analysis of the general form of build fusion, also known as deforestation, over the inductive and the coinductive datatypes, regular or nested. The analysis is based on a novel logical interpretation of parametricity in terms of the paranatural transformations, introduced in the paper.Comment: 17 pages, 6 diagrams; Andre Scedrov FestSchrif
    • …
    corecore