10 research outputs found

    Quantum protocols for few-qubit devices

    Get PDF
    Quantum computers promise to dramatically speed up certain algorithms, but remain challenging to build in practice. This thesis focuses on near-term experiments, which feature a small number (say, 10-200) of qubits that lose the stored information after a short amount of time. We propose various theoretical protocols that can get the best out of such highly limited computers. For example, we construct logical operations, the building blocks of algorithms, by exploiting the native physical behavior of the machine. Moreover, we describe how quantum information can be sent between qubits that are only indirectly connected

    Quantum and stochastic processes

    Get PDF

    A quantum view on convex optimization

    Get PDF
    In this dissertation we consider quantum algorithms for convex optimization. We start by considering a black-box setting of convex optimization. In this setting we show that quantum computers require exponentially fewer queries to a membership oracle for a convex set in order to implement a separation oracle for that set. We do so by proving that Jordan's quantum gradient algorithm can also be applied to find sub-gradients of convex Lipschitz functions, even though these functions might not even be differentiable. As a corollary we get a quadraticly faster algorithm for convex optimization using membership queries. As a second set of results we give sub-linear time quantum algorithms for semidefinite optimization by speeding up the iterations of the Arora-Kale algorithm. For the problem of finding approximate Nash equilibria for zero-sum games we then give specific algorithms that improve the error-dependence and only depend on the sparsity of the game, not it's size. These last results yield improved algorithms for linear programming as a corollary. We also show several lower bounds in these settings, matching the upper bounds in most or all parameters

    Quantum entanglement: insights via graph parameters and conic optimization

    Get PDF
    In this PhD thesis we study the effects of quantum entanglement, one of quantum mechanics most peculiar features, in nonlocal games and communication problems in zero-error information theory. A nonlocal game is a thought experiment in which two cooperating players, who are forbidden to communicate, want to perform a certain task. Zero-error information theory is the mathematical field that studies communication problems where no error is tolerated. The unifying link among the various scenarios we consider is their combinatorial nature and in particular their reformulations as graph theoretical problems, mainly concerning the chromatic and stability numbers and some quantum generalizations thereof. In this thesis we propose a novel approach to the study of these quantum graph parameters using the paradigm of conic optimization. For that, we introduce and study the completely positive semidefinite cone, a new matrix cone consisting of all symmetric matrices that admit a Gram representation by positive semidefinite matrices. Furthermore, we investigate whether entanglement allows for better-than-classical communication schemes in some well-known problems from zero-error information theory. For example we study the channel coding problem, which asks a sender to transmit data reliably to a receiver in the presence of noise, as well as some of its generalizations

    New Directions in Model Checking Dynamic Epistemic Logic

    Get PDF
    Dynamic Epistemic Logic (DEL) can model complex information scenarios in a way that appeals to logicians. However, its existing implementations are based on explicit model checking which can only deal with small models, so we do not know how DEL performs for larger and real-world problems. For temporal logics, in contrast, symbolic model checking has been developed and successfully applied, for example in protocol and hardware verification. Symbolic model checkers for temporal logics are very efficient and can deal with very large models. In this thesis we build a bridge: new faithful representations of DEL models as so-called knowledge and belief structures that allow for symbolic model checking. For complex epistemic and factual change we introduce transformers, a symbolic replacement for action models. Besides a detailed explanation of the theory, we present SMCDEL: a Haskell implementation of symbolic model checking for DEL using Binary Decision Diagrams. Our new methods can solve well-known benchmark problems in epistemic scenarios much faster than existing methods for DEL. We also compare its performance to to existing model checkers for temporal logics and show that DEL can compete with established frameworks. We zoom in on two specific variants of DEL for concrete applications. First, we introduce Public Inspection Logic, a new framework for the knowledge of variables and its dynamics. Second, we study the dynamic gossip problem and how it can be analyzed with epistemic logic. We show that existing gossip protocols can be improved, but that no perfect strengthening of "Learn New Secrets" exists

    Characterizing all models in infinite cardinalities

    Get PDF
    Fix a cardinal κ. We can ask the question what kind of a logic L is needed to characterize all models of cardinality κ (in a finite vocabulary) up to isomorphism by their L-theories. In other words: for which logics L it is true that if any models A and B satisfy the same L-theory then they are isomorphic. It is always possible to characterize models of cardinality κ by their Lκ+,κ+- theories, but we are interested in finding a "small" logic L, i.e. the sentences of L are hereditarily smaller than κ. For any cardinal κ it is independent of ZFC whether any such small definable logic L exists. If it exists it can be second order logic for κ = ω and fourth order logic or certain infinitary second order logic L2κ,ω for uncountable κ. All models of cardinality κ can always be characterized by their theories in a small logic with generalized quantifiers, but the logic may be not definable in the language of set theory
    corecore