7,548 research outputs found

    Sandwiching saturation number of fullerene graphs

    Full text link
    The saturation number of a graph GG is the cardinality of any smallest maximal matching of GG, and it is denoted by s(G)s(G). Fullerene graphs are cubic planar graphs with exactly twelve 5-faces; all the other faces are hexagons. They are used to capture the structure of carbon molecules. Here we show that the saturation number of fullerenes on nn vertices is essentially n/3n/3

    On affine rigidity

    Full text link
    We define the notion of affine rigidity of a hypergraph and prove a variety of fundamental results for this notion. First, we show that affine rigidity can be determined by the rank of a specific matrix which implies that affine rigidity is a generic property of the hypergraph.Then we prove that if a graph is is (d+1)(d+1)-vertex-connected, then it must be "generically neighborhood affinely rigid" in dd-dimensional space. This implies that if a graph is (d+1)(d+1)-vertex-connected then any generic framework of its squared graph must be universally rigid. Our results, and affine rigidity more generally, have natural applications in point registration and localization, as well as connections to manifold learning.Comment: Updated abstrac

    Characterizing interactions in online social networks during exceptional events

    Get PDF
    Nowadays, millions of people interact on a daily basis on online social media like Facebook and Twitter, where they share and discuss information about a wide variety of topics. In this paper, we focus on a specific online social network, Twitter, and we analyze multiple datasets each one consisting of individuals' online activity before, during and after an exceptional event in terms of volume of the communications registered. We consider important events that occurred in different arenas that range from policy to culture or science. For each dataset, the users' online activities are modeled by a multilayer network in which each layer conveys a different kind of interaction, specifically: retweeting, mentioning and replying. This representation allows us to unveil that these distinct types of interaction produce networks with different statistical properties, in particular concerning the degree distribution and the clustering structure. These results suggests that models of online activity cannot discard the information carried by this multilayer representation of the system, and should account for the different processes generated by the different kinds of interactions. Secondly, our analysis unveils the presence of statistical regularities among the different events, suggesting that the non-trivial topological patterns that we observe may represent universal features of the social dynamics on online social networks during exceptional events

    Intersections of multiplicative translates of 3-adic Cantor sets

    Full text link
    Motivated by a question of Erd\H{o}s, this paper considers questions concerning the discrete dynamical system on the 3-adic integers given by multiplication by 2. Let the 3-adic Cantor set consist of all 3-adic integers whose expansions use only the digits 0 and 1. The exception set is the set of 3-adic integers whose forward orbits under this action intersects the 3-adic Cantor set infinitely many times. It has been shown that this set has Hausdorff dimension 0. Approaches to upper bounds on the Hausdorff dimensions of these sets leads to study of intersections of multiplicative translates of Cantor sets by powers of 2. More generally, this paper studies the structure of finite intersections of general multiplicative translates of the 3-adic Cantor set by integers 1 < M_1 < M_2 < ...< M_n. These sets are describable as sets of 3-adic integers whose 3-adic expansions have one-sided symbolic dynamics given by a finite automaton. As a consequence, the Hausdorff dimension of such a set is always of the form log(\beta) for an algebraic integer \beta. This paper gives a method to determine the automaton for given data (M_1, ..., M_n). Experimental results indicate that the Hausdorff dimension of such sets depends in a very complicated way on the integers M_1,...,M_n.Comment: v1, 31 pages, 6 figure

    Characterizing partition functions of the edge-coloring model by rank growth

    Full text link
    We characterize which graph invariants are partition functions of an edge-coloring model over the complex numbers, in terms of the rank growth of associated `connection matrices'

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure
    corecore