3 research outputs found

    Henkin quantifiers and complete problems

    Full text link
    We analyze computational aspects of partially ordered quantification in first-order logic. Show that almost any non-linear quantifier, applied to quantifier-free first-order formula suffices to express an -complete predicate. The remaining non-linear quantifiers experiment exactly co- predicates.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26312/1/0000397.pd

    Alternating (In)Dependence-Friendly Logic

    Get PDF
    Hintikka and Sandu originally proposed Independence Friendly Logic ([Formula presented]) as a first-order logic of imperfect information to describe game-theoretic phenomena underlying the semantics of natural language. The logic allows for expressing independence constraints among quantified variables, in a similar vein to Henkin quantifiers, and has a nice game-theoretic semantics in terms of imperfect information games. However, the [Formula presented] semantics exhibits some limitations, at least from a purely logical perspective. It treats the players asymmetrically, considering only one of the two players as having imperfect information when evaluating truth, resp., falsity, of a sentence. In addition, truth and falsity of sentences coincide with the existence of a uniform winning strategy for one of the two players in the semantic imperfect information game. As a consequence, [Formula presented] does admit undetermined sentences, which are neither true nor false, thus failing the law of excluded middle. These idiosyncrasies limit its expressive power to the existential fragment of Second Order Logic ([Formula presented]). In this paper, we investigate an extension of [Formula presented], called Alternating Dependence/Independence Friendly Logic ([Formula presented]), tailored to overcome these limitations. To this end, we introduce a novel compositional semantics, generalising the one based on trumps proposed by Hodges for [Formula presented]. The new semantics (i) allows for meaningfully restricting both players at the same time, (ii) enjoys the property of game-theoretic determinacy, (iii) recovers the law of excluded middle for sentences, and (iv) grants [Formula presented] the full descriptive power of [Formula presented]. We also provide an equivalent Herbrand-Skolem semantics and a game-theoretic semantics for the prenex fragment of [Formula presented], the latter being defined in terms of a determined infinite-duration game that precisely captures the other two semantics on finite structures

    Characterizing Second Order Logic with First Order Quantifiers

    No full text
    corecore