49 research outputs found

    Characterizations and algorithms for generalized Cops and Robbers games

    Get PDF
    We propose a definition of generalized Cops and Robbers games where there are two players, the Pursuer and the Evader, who each move via prescribed rules. If the Pursuer can ensure that the game enters into a fixed set of final positions, then the Pursuer wins; otherwise, the Evader wins. A relational characterization of the games where the Pursuer wins is provided. A precise formula is given for the length of the game, along with an algorithm for computing if the Pursuer has a winning strategy whose complexity is a function of the parameters of the game. For games where the position of one player does not affect the available moves of he other, a vertex elimination ordering characterization, analogous to a cop-win ordering, is given for when the Pursuer has a winning strategy

    The Cop Number of the One-Cop-Moves Game on Planar Graphs

    Full text link
    Cops and robbers is a vertex-pursuit game played on graphs. In the classical cops-and-robbers game, a set of cops and a robber occupy the vertices of the graph and move alternately along the graph's edges with perfect information about each other's positions. If a cop eventually occupies the same vertex as the robber, then the cops win; the robber wins if she can indefinitely evade capture. Aigner and Frommer established that in every connected planar graph, three cops are sufficient to capture a single robber. In this paper, we consider a recently studied variant of the cops-and-robbers game, alternately called the one-active-cop game, one-cop-moves game or the lazy-cops-and-robbers game, where at most one cop can move during any round. We show that Aigner and Frommer's result does not generalise to this game variant by constructing a connected planar graph on which a robber can indefinitely evade three cops in the one-cop-moves game. This answers a question recently raised by Sullivan, Townsend and Werzanski.Comment: 32 page

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn
    corecore